Spaces:
Sleeping
Sleeping
import streamlit as st | |
from tensorflow.keras.models import load_model | |
from PIL import Image | |
import numpy as np | |
st.title("Skin Cancer Image Classification") | |
st.write("Upload an image and let the model guess whether it is a cancer or not.") | |
model = load_model("my_cnn_model.keras") | |
def process_image(img): | |
img = img.resize((170,170)) # set the size as 170 x 170 pixel | |
img = np.array(img) | |
img = img / 255.0 # normalized | |
img = np.expand_dims(img, axis=0) | |
return img | |
file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if file is not None: | |
img = Image.open(file) | |
st.image(img, caption="Uploaded Image") | |
image = process_image(img) | |
prediction = model.predict(image) | |
predicted_class = np.argmax(prediction) | |
class_names = ["It is NOT Cancer!", "It is Cancer!"] | |
st.write(class_names[predicted_class]) | |