ChatGPT / app.py
HookBeforeAppDelegate's picture
Update app.py
5d247de verified
import gradio as gr
import os
import sys
import json
import requests
import random
MODEL = "gpt-4o-mini"
API_URL = os.getenv("API_URL")
#API_URL = "https://api.openai.com/v1/chat/completions"
DISABLED = os.getenv("DISABLED") == 'True'
OPENAI_API_KEYS = os.getenv("OPENAI_API_KEYS").split(',')
print (API_URL)
#print (OPENAI_API_KEYS)
NUM_THREADS = int(os.getenv("NUM_THREADS"))
print (NUM_THREADS)
def exception_handler(exception_type, exception, traceback):
print("%s: %s" % (exception_type.__name__, exception))
sys.excepthook = exception_handler
sys.tracebacklimit = 0
def predict(inputs, top_p, temperature, chat_counter, chatbot, history, request:gr.Request):
payload = {
"model": MODEL,
"messages": [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature,
"top_p": top_p,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
OPENAI_API_KEY = random.choice(OPENAI_API_KEYS)
print (OPENAI_API_KEY)
headers_dict = {key.decode('utf-8'): value.decode('utf-8') for key, value in request.headers.raw}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}",
"Headers": f"{headers_dict}"
}
# print(f"chat_counter - {chat_counter}")
if chat_counter != 0 :
messages = []
for i, data in enumerate(history):
if i % 2 == 0:
role = 'user'
else:
role = 'assistant'
message = {}
message["role"] = role
message["content"] = data
messages.append(message)
message = {}
message["role"] = "user"
message["content"] = inputs
messages.append(message)
payload = {
"model": MODEL,
"messages": messages,
"temperature" : temperature,
"top_p": top_p,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
chat_counter += 1
history.append(inputs)
token_counter = 0
partial_words = ""
counter = 0
try:
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
response_code = f"{response}"
#if response_code.strip() != "<Response [200]>":
# #print(f"response code - {response}")
# raise Exception(f"Sorry, hitting rate limit. Please try again later. {response}")
for chunk in response.iter_lines():
#print (chunk)
#sys.stdout.flush()
#Skipping first chunk
if counter == 0:
counter += 1
continue
#counter+=1
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
token_counter += 1
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=False), gr.update(interactive=False) # resembles {chatbot: chat, state: history}
except Exception as e:
print (f'error found: {e}')
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ], history, chat_counter, response, gr.update(interactive=True), gr.update(interactive=True)
print(json.dumps({"chat_counter": chat_counter, "payload": payload, "partial_words": partial_words, "token_counter": token_counter, "counter": counter}))
def reset_textbox():
return gr.update(value='', interactive=False), gr.update(interactive=False)
title = """<h1 align="center">GPT-4o Mini: Research Preview (Short-Term Availability)</h1>"""
if DISABLED:
title = """<h1 align="center" style="color:red">This app has reached OpenAI's usage limit. Please check back tomorrow.</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of a gpt-4 turbo LLM.
"""
theme = gr.themes.Default(primary_hue="green")
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;}
#chatbot {height: 520px; overflow: auto;}""",
theme=theme) as demo:
gr.HTML(title)
gr.HTML("""<h3 align="center">This app provides you full access to GPT-4o mini (128K token limit). You don't need any OPENAI API key.</h3>""")
#gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/ChatGPT4?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''')
with gr.Column(elem_id = "col_container", visible=True) as main_block:
#GPT4 API Key is provided by Huggingface
#openai_api_key = gr.Textbox(type='password', label="Enter only your GPT4 OpenAI API key here")
chatbot = gr.Chatbot(elem_id='chatbot') #c
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter") #t
state = gr.State([]) #s
with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button(visible=not DISABLED) #.style(full_width=True)
with gr.Column(scale=3):
server_status_code = gr.Textbox(label="Status code from OpenAI server", )
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
chat_counter = gr.Number(value=0, visible=False, precision=0)
inputs.submit(reset_textbox, [], [inputs, b1], queue=False)
inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) #openai_api_key
b1.click(reset_textbox, [], [inputs, b1], queue=False)
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1],) #openai_api_key
demo.queue(max_size=10, default_concurrency_limit=NUM_THREADS, api_open=False).launch(share=False)