Spaces:
Runtime error
Runtime error
File size: 6,300 Bytes
af926f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
from metrics import dice_loss, dice_coef, iou
from libs import *
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
""" Global parameters """
H = 512
W = 512
def load_image(image_file):
img = Image.open(image_file)
return img
def choose_background(col1, col2, col3):
background_file = None
bg_image = None
with col3:
with st.spinner("[UPLOAD] Background uploading"):
try:
if background_file is None:
try:
background_file = st.file_uploader('[UPLOAD] Please upload your background:', type=["png", "jpg", "jpeg"])
time.sleep(1)
except:
pass
except:
print("[ERROR] Sorry, something went wrong!")
pass
if background_file is not None:
with col2:
st.success("Load background successfully!...")
bg_image = load_image(background_file)
print(type(bg_image))
save_path = "backgrounds\\" + background_file.name
bg_image.save(save_path)
return bg_image, save_path
def create_dir(path):
if not os.path.exists(path):
os.makedirs(path)
def check_clothe(model_path, img_path):
# Model
model = torch.hub.load('ultralytics/yolov5', 'custom', model_path) # or yolov5n - yolov5x6, custom
# Inference
results = model(img_path)
# Results
new_results = results.pandas().xyxy[0].sort_values("confidence").to_json(orient="records")
new_results = json.loads(new_results)
classes_in_img = []
classes_count_dict = {}
item = ''
if len(new_results) != 0:
for i in range(len(new_results)):
classes_in_img.append(new_results[i]['name'])
set_of_classes = set(classes_in_img)
list_of_classes = list(set_of_classes)
older_value_count = 0
for idx in range(len(list_of_classes)):
value_count = classes_in_img.count(list_of_classes[idx])
if value_count > older_value_count:
item = list_of_classes[idx]
else:
item = None
return item
def main_processing(col1, col2, col3, sport_bg_path, swim_bg_path, office_bg_path, img_path, name, detection_model_path, background_model_path):
""" Seeding """
bg_path = None
np.random.seed(42)
tf.random.set_seed(42)
model_path = detection_model_path
stadium_sport_bg_path = sport_bg_path
beach_swim_bg_path = swim_bg_path
office_bg_path = office_bg_path
""" Directory for storing files """
create_dir("remove_bg")
st.write('Auto detect or choosing background? ')
if bg_path is None:
if st.checkbox('Choose background'):
try:
bg_img, save_path = choose_background(col1, col2, col3)
bg_path = save_path
except:
pass
""" Directory for storing files """
elif st.checkbox('Automatic background'):
item = check_clothe(model_path, img_path)
if item == 'sport':
bg_path = stadium_sport_bg_path
st.write("Hãy tiếp tục luyện tập TDTT chăm chỉ nhé!...")
if item == 'swim':
bg_path = beach_swim_bg_path
st.write("Thời tiết thế này không đi biển hơi phí nhé!...")
if item == 'office':
bg_path = office_bg_path
st.write("Chơi nhiều roài, đi làm chăm chỉ thuii...")
if item == None:
st.warning("Sorry, mô hình chúng tôi không biết bạn đang mặc cái quái gì hết...")
st.warning("Chọn background bạn muốn nhé!")
try:
background_img, save_path = choose_background(col1, col2, col3)
bg_path = save_path
except:
pass
else:
pass
else:
pass
if bg_path is not None:
""" Loading model: DeepLabV3+ """
with CustomObjectScope({'iou': iou, 'dice_coef': dice_coef, 'dice_loss': dice_loss}):
model = tf.keras.models.load_model(background_model_path)
""" Read the image """
image = cv2.imread(img_path, cv2.IMREAD_COLOR)
h, w, _ = image.shape
x = cv2.resize(image, (W, H))
x = x / 255.0
x = x.astype(np.float32)
x = np.expand_dims(x, axis=0)
""" Prediction """
y = model.predict(x)[0]
y = cv2.resize(y, (w, h))
y = np.expand_dims(y, axis=-1)
y = y > 0.5
photo_mask = y
background_mask = np.abs(1 - y)
cv2.imwrite(
f"remove_bg\\{name}_1.png",
photo_mask * 255)
cv2.imwrite(
f"remove_bg\\{name}_2.png",
background_mask * 255)
cv2.imwrite(
f"remove_bg\\{name}_3.png",
image * photo_mask)
cv2.imwrite(
f"remove_bg\\{name}_4.png",
image * background_mask)
bg_img = cv2.imread(bg_path, cv2.IMREAD_COLOR)
print(bg_img.shape)
new_bg_img = cv2.resize(bg_img, (w, h))
new_new_bg_img = new_bg_img * background_mask
cv2.imwrite(
f"remove_bg\\{name}_5.png",
new_new_bg_img)
final_final_img = new_new_bg_img + image * photo_mask
final_img_path = f"remove_bg\\{name}_6.png"
cv2.imwrite(
final_img_path,
final_final_img)
return final_img_path
# if __name__ == '__main__':
# """ Seeding """
# np.random.seed(42)
# tf.random.set_seed(42)
#
# bg_path = ""
# background_model_path = "weight_files\\model.h5"
# detection_model_path = "weight_files\\clothes_detection_model.pt"
#
# stadium_sport_bg_path = "backgrounds\\camnou_stadium.jpg"
# beach_swim_bg_path = "backgrounds\\beach.jpg"
# office_bg_path = "backgrounds\\office-bg.jpg"
#
# img_path = "images\\truong-van-bang-10163832.jpg"
#
# main(sport_bg_path=stadium_sport_bg_path, swim_bg_path=beach_swim_bg_path, office_bg_path=office_bg_path, name="a", img_path=img_path, detection_model_path=detection_model_path, background_model_path=background_model_path) |