File size: 6,300 Bytes
af926f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from metrics import dice_loss, dice_coef, iou
from libs import *


os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

""" Global parameters """
H = 512
W = 512


def load_image(image_file):
	img = Image.open(image_file)
	return img


def choose_background(col1, col2, col3):
    background_file = None
    bg_image = None
    with col3:
        with st.spinner("[UPLOAD] Background uploading"):
            try:
                if background_file is None:
                    try:
                        background_file = st.file_uploader('[UPLOAD] Please upload your background:', type=["png", "jpg", "jpeg"])
                        time.sleep(1)
                    except:
                        pass
            except:
                print("[ERROR] Sorry, something went wrong!")
                pass

    if background_file is not None:
        with col2:
            st.success("Load background successfully!...")

        bg_image = load_image(background_file)
        print(type(bg_image))
        save_path = "backgrounds\\" + background_file.name
        bg_image.save(save_path)

        return bg_image, save_path


def create_dir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def check_clothe(model_path, img_path):
    # Model
    model = torch.hub.load('ultralytics/yolov5', 'custom', model_path)  # or yolov5n - yolov5x6, custom

    # Inference
    results = model(img_path)

    # Results
    new_results = results.pandas().xyxy[0].sort_values("confidence").to_json(orient="records")
    new_results = json.loads(new_results)

    classes_in_img = []
    classes_count_dict = {}
    item = ''
    if len(new_results) != 0:
        for i in range(len(new_results)):
            classes_in_img.append(new_results[i]['name'])
        set_of_classes = set(classes_in_img)
        list_of_classes = list(set_of_classes)

        older_value_count = 0
        for idx in range(len(list_of_classes)):
            value_count = classes_in_img.count(list_of_classes[idx])
            if value_count > older_value_count:
                item = list_of_classes[idx]

    else:
        item = None

    return item



def main_processing(col1, col2, col3, sport_bg_path, swim_bg_path, office_bg_path, img_path, name, detection_model_path, background_model_path):
    """ Seeding """
    bg_path = None
    np.random.seed(42)
    tf.random.set_seed(42)

    model_path = detection_model_path

    stadium_sport_bg_path = sport_bg_path
    beach_swim_bg_path = swim_bg_path
    office_bg_path = office_bg_path

    """ Directory for storing files """
    create_dir("remove_bg")

    st.write('Auto detect or choosing background? ')

    if bg_path is None:
        if st.checkbox('Choose background'):
            try:
                bg_img, save_path = choose_background(col1, col2, col3)
                bg_path = save_path
            except:
                pass

            """ Directory for storing files """
        elif st.checkbox('Automatic background'):
            item = check_clothe(model_path, img_path)
            if item == 'sport':
                bg_path = stadium_sport_bg_path
                st.write("Hãy tiếp tục luyện tập TDTT chăm chỉ nhé!...")
            if item == 'swim':
                bg_path = beach_swim_bg_path
                st.write("Thời tiết thế này không đi biển hơi phí nhé!...")
            if item == 'office':
                bg_path = office_bg_path
                st.write("Chơi nhiều roài, đi làm chăm chỉ thuii...")
            if item == None:
                st.warning("Sorry, mô hình chúng tôi không biết bạn đang mặc cái quái gì hết...")
                st.warning("Chọn background bạn muốn nhé!")
                try:
                    background_img, save_path = choose_background(col1, col2, col3)
                    bg_path = save_path
                except:
                    pass

            else:
                pass

        else:
            pass

    if bg_path is not None:
        """ Loading model: DeepLabV3+ """
        with CustomObjectScope({'iou': iou, 'dice_coef': dice_coef, 'dice_loss': dice_loss}):
            model = tf.keras.models.load_model(background_model_path)

        """ Read the image """
        image = cv2.imread(img_path, cv2.IMREAD_COLOR)
        h, w, _ = image.shape
        x = cv2.resize(image, (W, H))
        x = x / 255.0
        x = x.astype(np.float32)
        x = np.expand_dims(x, axis=0)

        """ Prediction """
        y = model.predict(x)[0]
        y = cv2.resize(y, (w, h))
        y = np.expand_dims(y, axis=-1)
        y = y > 0.5

        photo_mask = y
        background_mask = np.abs(1 - y)
        cv2.imwrite(
            f"remove_bg\\{name}_1.png",
            photo_mask * 255)
        cv2.imwrite(
            f"remove_bg\\{name}_2.png",
            background_mask * 255)

        cv2.imwrite(
            f"remove_bg\\{name}_3.png",
            image * photo_mask)
        cv2.imwrite(
            f"remove_bg\\{name}_4.png",
            image * background_mask)

        bg_img = cv2.imread(bg_path, cv2.IMREAD_COLOR)
        print(bg_img.shape)
        new_bg_img = cv2.resize(bg_img, (w, h))

        new_new_bg_img = new_bg_img * background_mask

        cv2.imwrite(
            f"remove_bg\\{name}_5.png",
            new_new_bg_img)

        final_final_img = new_new_bg_img + image * photo_mask

        final_img_path = f"remove_bg\\{name}_6.png"
        cv2.imwrite(
            final_img_path,
            final_final_img)

        return final_img_path


# if __name__ == '__main__':
#     """ Seeding """
#     np.random.seed(42)
#     tf.random.set_seed(42)
#
#     bg_path = ""
#     background_model_path = "weight_files\\model.h5"
#     detection_model_path = "weight_files\\clothes_detection_model.pt"
#
#     stadium_sport_bg_path = "backgrounds\\camnou_stadium.jpg"
#     beach_swim_bg_path = "backgrounds\\beach.jpg"
#     office_bg_path = "backgrounds\\office-bg.jpg"
#
#     img_path = "images\\truong-van-bang-10163832.jpg"
#
#     main(sport_bg_path=stadium_sport_bg_path, swim_bg_path=beach_swim_bg_path, office_bg_path=office_bg_path, name="a", img_path=img_path, detection_model_path=detection_model_path, background_model_path=background_model_path)