Spaces:
Running
Running
File size: 4,301 Bytes
14d74dd afb895f 14d74dd 800ef3d 19fe157 851e1ef 2c88b04 851e1ef 0b8ee40 14d74dd c67d420 800ef3d 14d74dd 800ef3d e46996a 800ef3d 14d74dd 800ef3d 14d74dd c897d84 d525093 800ef3d 851e1ef d525093 851e1ef c897d84 800ef3d c897d84 851e1ef c67d420 851e1ef c67d420 14d74dd 851e1ef c67d420 14d74dd 851e1ef c67d420 c897d84 800ef3d 14d74dd 851e1ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import os
import gradio as gr
import chromadb
from sentence_transformers import SentenceTransformer
import spaces
client = chromadb.PersistentClient(path="./chroma")
collection_de = client.get_collection(name="phil_de")
collection_en = client.get_collection(name="phil_en")
authors_list_de = ["Ludwig Wittgenstein", "Sigmund Freud", "Marcus Aurelius", "Friedrich Nietzsche", "Epiktet", "Ernst Jünger", "Georg Christoph Lichtenberg", "Balthasar Gracian", "Hannah Arendt", "Erich Fromm", "Albert Camus"]
authors_list_en = ["Friedrich Nietzsche", "Joscha Bach"]
@spaces.GPU
def get_embeddings(queries, task):
model = SentenceTransformer("Linq-AI-Research/Linq-Embed-Mistral", use_auth_token=os.getenv("HF_TOKEN"))
prompts = [f"Instruct: {task}\nQuery: {query}" for query in queries]
query_embeddings = model.encode(prompts)
return query_embeddings
def query_chroma(collection, embedding, authors):
results = collection.query(
query_embeddings=[embedding.tolist()],
n_results=10,
where={"author": {"$in": authors}} if authors else {},
include=["documents", "metadatas", "distances"]
)
ids = results.get('ids', [[]])[0]
metadatas = results.get('metadatas', [[]])[0]
documents = results.get('documents', [[]])[0]
distances = results.get('distances', [[]])[0]
formatted_results = []
for id_, metadata, document_text, distance in zip(ids, metadatas, documents, distances):
result_dict = {
"id": id_,
"author": metadata.get('author', 'Unknown author'),
"book": metadata.get('book', 'Unknown book'),
"section": metadata.get('section', 'Unknown section'),
"title": metadata.get('title', 'Untitled'),
"text": document_text,
"distance": distance
}
formatted_results.append(result_dict)
return formatted_results
with gr.Blocks(css=".custom-markdown { border: 1px solid #ccc; padding: 10px; border-radius: 5px; }") as demo:
gr.Markdown("Enter your query, filter authors (default is all), click **Search** to search. Delimit multiple queries with semicola; since there is a quota for each user (based on IP) it makes sense to query in batches. The search takes around 50 seconds because the embedding model needs to be loaded to a GPU each time (another reason to do multiple queries at once).")
database_inp = gr.Dropdown(label="Database", choices=["German", "English"], value="German")
author_inp = gr.Dropdown(label="Authors", choices=authors_list_de, multiselect=True)
inp = gr.Textbox(label="Query", placeholder="Wie kann ich gesund leben und bedeutet Gesundheit für jeden das gleiche?; Was ist der Sinn des Lebens?; ...")
btn = gr.Button("Search")
results = gr.State()
def update_authors(database):
return gr.update(choices=authors_list_de if database == "German" else authors_list_en)
database_inp.change(
fn=lambda database: update_authors(database),
inputs=[database_inp],
outputs=[author_inp]
)
def perform_query(queries, authors, database):
task = "Given a question, retrieve passages that answer the question"
queries = queries.split(';')
embeddings = get_embeddings(queries, task)
collection = collection_de if database == "German" else collection_en
results_data = []
for query, embedding in zip(queries, embeddings):
res = query_chroma(collection, embedding, authors)
results_data.append((query, res))
return results_data
btn.click(
perform_query,
inputs=[inp, author_inp, database_inp],
outputs=[results]
)
@gr.render(inputs=[results])
def display_accordion(data):
for query, res in data:
with gr.Accordion(query, open=False) as acc:
for result in res:
with gr.Column():
author = result.get('author', 'Unknown author')
book = result.get('book', 'Unknown book')
text = result.get('text')
markdown_contents = f"**{author}, {book}**\n\n{text}"
gr.Markdown(value=markdown_contents, elem_classes="custom-markdown")
demo.launch() |