Spaces:
Sleeping
Sleeping
File size: 174,264 Bytes
c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 71b065c c9abb08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 |
# -*- coding: utf-8 -*-
# ---------------------------------------------------------------------------
# 0) Imports
# ---------------------------------------------------------------------------
import gradio as gr
import chromadb
import google.generativeai as genai
import os
from dotenv import load_dotenv
import logging
import functools
from collections import defaultdict
import traceback # For detailed error logging
import datetime # For timestamped filenames
import re # For parsing tangents and LLM JSON output
import numpy as np # For cosine similarity calculation
import json # For parsing LLM JSON output
import threading # tiny file‑lock for the JSON ledger
import html # escape text for clickable spans
import time # Useful for simple sleeps if needed for debugging timing
# ---------------------------------------------------------------------------
# --- Configuration ---
# Configure logging level
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
# Load environment variables (for API Key)
load_dotenv()
API_KEY = os.getenv("GEMINI_API_KEY")
if not API_KEY:
logging.error("GEMINI_API_KEY not found in environment variables.")
else:
try:
genai.configure(api_key=API_KEY)
logging.info("Gemini API configured successfully.")
except Exception as e:
logging.error(f"Error configuring Gemini API: {e}")
API_KEY = None
# Chroma DB Configuration
CHROMA_DB_PATH = "./chroma"
COLLECTION_NAME = "phil_de"
# Gemini Model Configuration
EMBEDDING_MODEL = "models/gemini-embedding-exp-03-07" # Using standard embedding model
LLM_RERANK_MODEL_NAME = "models/gemini-2.0-flash" # Use a capable model for reasoning/ranking
logging.info(f"Using embedding model: {EMBEDDING_MODEL}")
logging.info(f"Using LLM Re-Rank/Truncate generation model: {LLM_RERANK_MODEL_NAME}")
# --- Constants ---
MAX_RESULTS_STANDARD = 20 # Max results shown in standard search after re-ranking
INITIAL_RESULTS_FOR_RERANK = 300 # How many results to fetch initially for re-ranking passes
RERANK_WINDOW_SIZE = 2 # +/- N sentences to consider for contextual re-ranking (both passes)
MIN_CHARS_FOR_RELEVANT_NEIGHBOR = 6 # Minimum characters for a neighbor to contribute to the re-rank score
RERANK_WEIGHT = 0.5 # Weight factor for neighbor similarity in 1st pass re-rank score
RERANK_DECAY = 0.1 # Score decay per sentence distance in 1st pass re-rank
LLM_RERANK_CANDIDATE_COUNT = 25 # How many candidates (after 1st pass re-rank) to send to LLM
LLM_RERANK_TARGET_COUNT = 10 # How many final edited results to request from LLM
PROMPT_LOG_DIR = "./prompts" # Directory to save LLM prompts for debugging
MAX_RESULTS_PER_AUTHOR = 3 # NEW: Max results from a single author in the final list
MAX_FAVOURITES = 50 # Max favourites to load for display
# --- Constants for Highlighting ---
HIGHLIGHT_HUE = 60 # Yellowish hue
HIGHLIGHT_SATURATION = 100
HIGHLIGHT_LIGHTNESS = 90
HIGHLIGHT_MAX_ALPHA = 0.5 # Max transparency (0 = transparent, 1 = opaque)
HIGHLIGHT_MIN_ALPHA = 0.05 # Minimum alpha for sentences at the threshold (when max > threshold)
HIGHLIGHT_SIMILARITY_THRESHOLD = 0.6 # Minimum cosine similarity score to apply highlighting
# ─── FAVOURITES CONFIG ──────────────────────────────────────────────────────
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # always absolute
FAV_FILE = os.path.join(BASE_DIR, "favourites.json") # ./favourites.json
_fav_lock = threading.Lock() # file‑write lock
# --- Define Prompt for LLM Re-ranking V3 ---
LLM_RERANKING_PROMPT_TEMPLATE_V3 = """
**Task:** Evaluate, truncate, and re-rank the provided text passages based on their relevance to the user's query. Return exactly the top {target_count} most relevant results, including their original IDs, the edited text, and a brief rationale for each selection.
**User Query:**
"{user_query}"
**Text Passages to Evaluate:**
{passage_blocks_str}
--- END OF PASSAGES ---
**Instructions:**
1. **Analyze Query:** Understand the core question or theme of the User Query.
2. **Evaluate Each Passage:** For each text passage provided above (identified by "Passage ID:" and separated by '--- PASSAGE SEPARATOR ---'):
* Read the entire passage carefully.
* Identify the most relevant contiguous sentences within the passage that directly address or best illuminate the User Query.
* **Truncate/Edit:** Extract ONLY the most relevant segment. Discard the rest of the passage. The goal is a concise, highly relevant excerpt. If an entire passage seems irrelevant, discard it entirely.
* **Rationale Generation:** Briefly explain *why* the segment you extracted is relevant to the User Query.
3. **Rank Edited Passages:** Based on the relevance of the *edited/truncated* segments you created, determine a final ranking. The most relevant edited segment should be ranked first.
4. **Select Top Results:** Choose exactly the top {target_count} most relevant edited passages from your ranking. If fewer than {target_count} passages were deemed relevant at all, return only those that were.
5. **Output:** Provide *only* a JSON formatted list containing exactly the top {target_count} (or fewer, if not enough were relevant) results. Each result object in the list MUST contain:
* `"original_id"`: The ID of the passage the text came from.
* `"edited_text"`: The concise, truncated text segment you extracted.
* `"rationale"`: Your brief explanation of why this segment is relevant.
The list should be sorted from most relevant to least relevant.
**Required JSON Output Format:**
```json
{{
"ranked_edited_passages": [
{{
"original_id": "...",
"edited_text": "...",
"rationale": "..."
}},
{{
"original_id": "...",
"edited_text": "...",
"rationale": "..."
}}
]
}}
```
**Final Output (JSON list of objects):**
```json
"""
# --- ChromaDB Connection and Author Fetching ---
collection = None
unique_authors = []
try:
os.makedirs(PROMPT_LOG_DIR, exist_ok=True)
logging.info(f"Prompt log directory ensured at: {PROMPT_LOG_DIR}")
client = chromadb.PersistentClient(path=CHROMA_DB_PATH)
collection = client.get_or_create_collection(name=COLLECTION_NAME)
logging.info(f"Successfully connected to ChromaDB collection '{COLLECTION_NAME}'. Collection count: {collection.count()}")
logging.info("Fetching all metadata to extract unique authors...")
if collection.count() > 0:
all_metadata = collection.get(include=['metadatas'])
if all_metadata and 'metadatas' in all_metadata and all_metadata['metadatas']:
authors_set = set()
for meta in all_metadata['metadatas']:
if isinstance(meta, dict) and meta.get('author'):
authors_set.add(meta['author'])
unique_authors = sorted(list(authors_set))
logging.info(f"Found {len(unique_authors)} unique authors.")
else:
logging.warning("Could not retrieve metadata or no metadata found to extract authors.")
else:
logging.warning(f"Collection '{COLLECTION_NAME}' is empty. No authors to fetch.")
except Exception as e:
logging.critical(f"FATAL: Could not connect to Chroma DB, fetch authors, or setup prompt dir: {e}", exc_info=True)
unique_authors = [] # Ensure it's an empty list on error
# --- Gemini Generation Model Initialization ---
llm_rerank_model = None
if API_KEY:
try:
llm_rerank_model = genai.GenerativeModel(LLM_RERANK_MODEL_NAME)
logging.info(f"Gemini LLM Re-Rank Model '{LLM_RERANK_MODEL_NAME}' initialized.")
except Exception as e:
logging.error(f"Error initializing Gemini LLM Re-Rank Model '{LLM_RERANK_MODEL_NAME}': {e}")
# --- Embedding Function ---
@functools.lru_cache(maxsize=1024)
def get_embedding(text, task="RETRIEVAL_QUERY"):
"""Generates an embedding for the given text using the configured Gemini model."""
if not API_KEY:
logging.error("Cannot generate embedding: API key not configured.")
return None
if not text or not isinstance(text, str) or not text.strip():
return None
valid_task_types = {"RETRIEVAL_QUERY", "RETRIEVAL_DOCUMENT", "SEMANTIC_SIMILARITY", "CLASSIFICATION", "CLUSTERING"}
if task not in valid_task_types:
logging.warning(f"Invalid task type '{task}' for embedding model. Defaulting to 'RETRIEVAL_QUERY'.")
task = "RETRIEVAL_QUERY"
try:
logging.debug(f"Requesting embedding for text: '{text[:50]}...' with task: {task}")
result = genai.embed_content(model=EMBEDDING_MODEL, content=text, task_type=task)
embedding = result.get('embedding')
if embedding:
logging.debug(f"Embedding received. Type: {type(embedding)}, Length (if list): {len(embedding) if isinstance(embedding, list) else 'N/A'}")
else:
logging.warning("Gemini API returned result without 'embedding' key.")
return embedding
except Exception as e:
logging.error(f"Error generating Gemini embedding for '{text[:50]}...': {e}", exc_info=True)
if "resource has been exhausted" in str(e).lower():
logging.error("Embedding failed likely due to quota exhaustion.")
elif "api key not valid" in str(e).lower():
logging.error("Embedding failed due to invalid API key.")
return None
# --- Helper: Fetch Embeddings for Neighbor IDs ---
@functools.lru_cache(maxsize=2048)
def fetch_embeddings_for_ids(ids_to_fetch_tuple):
"""Fetches embeddings for a tuple of passage IDs from ChromaDB."""
if collection is None or not ids_to_fetch_tuple:
return {}
valid_ids = [str(id_val) for id_val in ids_to_fetch_tuple if id_val is not None]
if not valid_ids:
return {}
embeddings_map = {}
try:
logging.debug(f"Fetching embeddings for {len(valid_ids)} neighbor IDs.")
results = collection.get(ids=valid_ids, include=['embeddings'])
ids_list = results.get('ids')
embeddings_list = results.get('embeddings')
if ids_list is not None and embeddings_list is not None and len(ids_list) == len(embeddings_list):
for i, fetched_id in enumerate(ids_list):
if embeddings_list[i] is not None:
embeddings_map[fetched_id] = embeddings_list[i]
else:
logging.warning(f"Embedding for neighbor ID {fetched_id} was None in DB result.")
elif ids_list is not None or embeddings_list is not None:
logging.error(f"Mismatch/Incomplete fetch for neighbor embeddings. Fetched IDs: {len(ids_list) if ids_list is not None else 'None'}, Embeddings: {len(embeddings_list) if embeddings_list is not None else 'None'} for {len(valid_ids)} requested IDs.")
except Exception as e:
logging.error(f"Error fetching neighbor embeddings for IDs {valid_ids}: {e}", exc_info=True)
return embeddings_map
# --- Helper: Fetch all sentences for a specific paragraph ---
def fetch_paragraph_data(author, book, paragraph_index):
"""Fetches all sentence data (doc, meta, embedding) for a specific paragraph."""
logging.debug(f"Attempting fetch_paragraph_data: Author='{author}', Book='{book}', ParaIdx={paragraph_index}")
if collection is None or author is None or book is None or paragraph_index is None or paragraph_index < 0:
logging.warning(f"fetch_paragraph_data: Invalid arguments provided.")
return []
try:
paragraph_index_int = int(paragraph_index) # Ensure integer for query
results = collection.get(
where={"$and": [{"author": author}, {"book": book}, {"paragraph_index": paragraph_index_int}]},
include=['documents', 'metadatas', 'embeddings'] # Crucial: include embeddings for highlighting
)
if not results or not results.get('ids'):
logging.debug(f"No sentences found for Author='{author}', Book='{book}', ParagraphIndex={paragraph_index_int}")
return []
paragraph_sentences = []
num_results = len(results['ids'])
documents_list = results.get('documents', [])
metadatas_list = results.get('metadatas', [])
embeddings_list = results.get('embeddings', [])
if not (num_results == len(documents_list) == len(metadatas_list) == len(embeddings_list)):
logging.warning(f"fetch_paragraph_data: Length mismatch in results for {author}/{book}/P{paragraph_index_int}. IDs:{num_results}, Docs:{len(documents_list)}, Metas:{len(metadatas_list)}, Embs:{len(embeddings_list)}. Clamping to minimum.")
num_results = min(num_results, len(documents_list), len(metadatas_list), len(embeddings_list))
for i in range(num_results):
sent_id = results['ids'][i]
meta = metadatas_list[i]
doc = documents_list[i]
emb = embeddings_list[i] # Get embedding
if doc is None or emb is None: # Embedding needed for highlighting
logging.warning(f"Skipping sentence {sent_id} in paragraph {paragraph_index_int} due to missing document or embedding.")
continue
entry = {'id': sent_id, 'doc': doc, 'meta': meta or {}, 'embedding': emb, 'paragraph_index': meta.get('paragraph_index', paragraph_index_int)}
try:
entry['sentence_sort_key'] = int(sent_id)
except (ValueError, TypeError):
entry['sentence_sort_key'] = float('inf') # Put unparsable IDs at the end
logging.warning(f"Could not parse sentence ID as integer for sorting: {sent_id}")
paragraph_sentences.append(entry)
paragraph_sentences.sort(key=lambda x: x.get('sentence_sort_key', float('inf')))
logging.debug(f"Fetched and sorted {len(paragraph_sentences)} sentences for paragraph {paragraph_index_int}.")
return paragraph_sentences
except Exception as e:
logging.error(f"Error fetching paragraph data for Author='{author}', Book='{book}', ParagraphIndex={paragraph_index}: {e}", exc_info=True)
return []
# --- Helper: Fetch Documents and Metadata for Multiple IDs ---
def fetch_multiple_passage_data(passage_ids):
"""Fetches documents and metadata for multiple passage IDs from ChromaDB."""
if not passage_ids or collection is None:
logging.warning(f"fetch_multiple_passage_data called with no IDs or no collection.")
return {}
passage_data_map = {}
try:
str_ids = [str(pid) for pid in passage_ids if pid is not None]
if not str_ids: return {}
logging.debug(f"Fetching passage data for {len(str_ids)} IDs: {str_ids[:10]}...")
results = collection.get(ids=str_ids, include=['documents', 'metadatas'])
if results and results.get('ids'):
fetched_ids = results['ids']
docs = results.get('documents', [])
metas = results.get('metadatas', [])
if not (len(fetched_ids) == len(docs) == len(metas)):
logging.error(f"Mismatch in lengths returned by collection.get for multiple IDs: {len(fetched_ids)} IDs, {len(docs)} docs, {len(metas)} metas. IDs requested: {str_ids}")
# Attempt to process based on shortest list? For now, proceed cautiously.
id_to_index = {fid: i for i, fid in enumerate(fetched_ids)}
# num_fetched = len(fetched_ids) # Unused after refactor
for req_id in str_ids:
if req_id in id_to_index:
idx = id_to_index[req_id]
# Check index bounds against potentially mismatched lists
doc = docs[idx] if idx < len(docs) and docs[idx] is not None else "_Text fehlt_"
meta = metas[idx] if idx < len(metas) and metas[idx] is not None else {}
passage_data_map[req_id] = {'doc': doc, 'meta': meta}
if doc == "_Text fehlt_": logging.warning(f"Missing document for fetched ID: {req_id}")
if not meta: logging.warning(f"Missing metadata for fetched ID: {req_id}")
else:
logging.warning(f"Requested ID not found in collection.get results: {req_id}")
missing_ids = set(str_ids) - set(passage_data_map.keys())
if missing_ids:
logging.warning(f"Could not find any data (doc/meta) for requested IDs: {missing_ids}")
else:
logging.warning(f"ChromaDB get returned no results or no IDs for requested list: {str_ids[:10]}...")
except Exception as e:
logging.error(f"Error fetching multiple passage data for IDs {passage_ids}: {e}", exc_info=True)
return passage_data_map
# --- Helper: Calculate Cosine Similarity ---
def cosine_similarity_np(vec1, vec2):
"""Calculates cosine similarity between two vectors using NumPy."""
if vec1 is None or vec2 is None:
return 0.0
try:
vec1 = np.array(vec1, dtype=np.float32)
vec2 = np.array(vec2, dtype=np.float32)
except Exception as e:
logging.error(f"Error converting vectors to numpy arrays for cosine similarity: {e}. vec1 type: {type(vec1)}, vec2 type: {type(vec2)}")
return 0.0
if vec1.shape != vec2.shape:
if vec1.size > 0 and vec2.size > 0:
logging.warning(f"Cosine similarity shape mismatch: {vec1.shape} vs {vec2.shape}")
return 0.0
if vec1.ndim == 0 or vec1.size == 0:
return 0.0
norm1 = np.linalg.norm(vec1)
norm2 = np.linalg.norm(vec2)
if norm1 == 0 or norm2 == 0:
return 0.0
epsilon = 1e-10 # Small value to prevent division by zero
similarity = np.dot(vec1, vec2) / (norm1 * norm2 + epsilon)
return float(np.clip(similarity, -1.0, 1.0))
# --- Helper: Compare Passage Metadata ---
def compare_passage_metadata(meta1, meta2):
"""Checks if two passages share the same author, book, section, and title metadata."""
if not meta1 or not meta2: return False
return (meta1.get('author') == meta2.get('author') and
meta1.get('book') == meta2.get('book') and
(meta1.get('section') is None and meta2.get('section') is None or meta1.get('section') == meta2.get('section')) and
(meta1.get('title') is None and meta2.get('title') is None or meta1.get('title') == meta2.get('title')))
# --- Favourite-helpers ---
def _load_favs() -> dict[str, int]:
logging.debug(f"Attempting to load favourites from {FAV_FILE}")
try:
with open(FAV_FILE, "r", encoding="utf-8") as fh:
raw = json.load(fh)
# Ensure IDs are strings and scores are integers
favs = {str(k): int(v) for k, v in raw.items()}
logging.debug(f"Successfully loaded {len(favs)} favourites.")
return favs
except FileNotFoundError:
logging.debug(f"Favourites file not found at {FAV_FILE.strip()}. Starting with empty favourites.")
return {}
except Exception as e:
logging.error(f"Could not read {FAV_FILE}: {e}", exc_info=True)
return {}
def _save_favs() -> None:
logging.debug(f"Attempting to save favourites to {FAV_FILE}")
tmp = FAV_FILE + ".tmp"
try:
# This code is now directly executed when _save_favs() is called.
# It relies on the CALLER (e.g., inc_favourite) holding the lock.
with open(tmp, "w", encoding="utf-8") as fh:
logging.debug(f"Opened temp file {tmp} for writing.")
json.dump(favourite_scores, fh, ensure_ascii=False, indent=2)
logging.debug("Dumped favourites to temp file.")
fh.flush()
logging.debug("Flushed temp file.")
os.fsync(fh.fileno()) # Force write to disk
logging.debug("Synced temp file.")
# logging.debug(f"Closed temp file {tmp}.") # This line is now after the 'with open' block
os.replace(tmp, FAV_FILE) # Atomic replace
logging.debug(f"Successfully replaced {FAV_FILE} with temp file.")
logging.debug(f"Successfully saved {len(favourite_scores)} favourites.")
except Exception as e:
logging.error(f"Could not save {FAV_FILE}: {e}", exc_info=True)
favourite_scores: dict[str, int] = _load_favs() # Load favourites on startup
def inc_favourite(passage_id: str) -> int:
"""Add one ⭐ to a sentence, persist, return new total."""
logging.info(f"Attempting to increment favourite for ID: {passage_id}")
if not passage_id or not isinstance(passage_id, str):
logging.warning(f"Invalid passage_id for inc_favourite: {passage_id}")
return 0
with _fav_lock:
# Ensure ID is treated as string key
str_passage_id = str(passage_id)
favourite_scores[str_passage_id] = favourite_scores.get(str_passage_id, 0) + 1
_save_favs()
new_score = favourite_scores[str_passage_id]
logging.info(f"Incremented favourite for ID {str_passage_id}. New score: {new_score}")
return new_score
def top_favourites(n: int = MAX_FAVOURITES) -> list[dict]:
"""Return N top‑scored sentences incl. doc/meta."""
logging.debug(f"Fetching top {n} favourites.")
if not favourite_scores:
logging.debug("No favourites available.")
return []
try:
# Sort items, convert keys to str explicitly just in case
top = sorted([(str(k), v) for k, v in favourite_scores.items()], key=lambda kv: kv[1], reverse=True)[:n]
ids = [sid for sid, _ in top]
logging.debug(f"Top {len(top)} favourite IDs: {ids}")
data = fetch_multiple_passage_data(ids) # Fetch document and metadata
logging.debug(f"Fetched data for {len(data)} favourite IDs.")
results = []
for sid, score in top:
if sid not in data:
logging.warning(f"Could not retrieve data for favourite ID {sid}. Skipping.")
continue
entry = {
"id": sid, # The ID
"document": data[sid]["doc"], # The text
"metadata": data[sid]["meta"], # The metadata
"distance": 0.0, # Favourites don't have a semantic distance in this view
"favourite_score": score, # The favourite score
}
results.append(entry)
logging.debug(f"Prepared {len(results)} top favourite results.")
return results
except Exception as e:
logging.error(f"Error fetching top favourites: {e}", exc_info=True)
return []
# --- Combined Formatting Function for all result types (Standard, LLM, Favourites) ---
def format_result_display(result_data, index, total_results, result_type):
"""Formats a single search, LLM, or favourite result for Accordion/Textbox display."""
if not result_data or not isinstance(result_data, dict):
# Return empty strings for both parts on error
return "Keine Ergebnisdaten verfügbar.", ""
metadata = result_data.get('metadata', {})
# Determine what text to display and its label
# Favourites might have 'document', Standard/LLM might have 'context_block' or 'edited_text'
display_text = result_data.get('edited_text', result_data.get('context_block', result_data.get('document', "_Text fehlt_")))
# Determine what ID label to use
# Prioritize original_id (LLM), then id (standard search/context/fav), then fallback
result_id = result_data.get('original_id', result_data.get('id', 'N/A'))
# --- Construct the Accordion Heading ---
accordion_title = ""
if result_type == "llm":
accordion_title = f"Gedanke {index + 1} von {total_results}"
elif result_type == "standard":
accordion_title = f"Gedanke {index + 1} von {total_results}"
elif result_type == "favourites":
score = result_data.get('favourite_score', 0)
accordion_title = f"⭐{score}" # Title is just the star score
# --- Construct the Accordion Content (Metadata & Scores) ---
accordion_content_md = ""
score_info_lines = []
# Favourite score is already in title for favs, only show for standard/LLM if present
if 'favourite_score' in result_data and result_data['favourite_score'] is not None:
if result_type != "favourites":
score_info_lines.append(f"* ⭐ Score: {result_data['favourite_score']}")
if 'final_similarity' in result_data and result_data['final_similarity'] is not None:
score_info_lines.append(f"* Score (Kontext-Gewichtet): {result_data['final_similarity']:.4f}")
score_info = "\n".join(score_info_lines) + "\n\n" if score_info_lines else "\n"
author = metadata.get('author', 'N/A')
book = metadata.get('book', 'N/A')
section = metadata.get('section', None)
titel = metadata.get('title', None)
accordion_content_md += f"* Autor: {author}\n* Buch: {book}\n"
if section and str(section).strip().lower() not in ["unknown", "n/a", ""]:
accordion_content_md += f"* Abschnitt: {section}\n"
if titel is not None and str(titel).strip().lower() not in ["unknown", "n/a", ""]:
try: accordion_content_md += f"* Titel/Nr: {int(titel)}\n"
except (ValueError, TypeError): accordion_content_md += f"* Titel/Nr: {titel}\n"
accordion_content_md += score_info
# --- ADDED: Include LLM Rationale if available and this is an LLM result ---
# Check for both result_type and the presence of the 'rationale' key
if result_type == "llm" and 'rationale' in result_data and result_data['rationale']:
accordion_content_md += f"**LLM Begründung:**\n> {result_data['rationale']}\n\n"
# --- END ADDED ---
# The text content for the Textbox is just the display_text
text_content = display_text
# Return the two separate parts
return accordion_title, accordion_content_md, text_content
# --- Contextual Re-ranking Function (V4) ---
def rerank_with_context(candidates, original_query_embedding, target_n_results, weight, decay_factor, window_size, min_chars_neighbor):
"""
Re-ranks candidate passages based on context similarity to the query,
normalizing initial and context scores, combining them additively,
selecting the best-scoring representative for each unique central ID,
and finally applying an author quota for diversity.
"""
logging.info(f"Starting contextual re-ranking (V4: Norm+DeDup+Quota) for {len(candidates)} candidates... "
f"(Win={window_size}, Weight={weight:.2f}, Decay={decay_factor:.2f}, MinChars={min_chars_neighbor}, AuthQuota={MAX_RESULTS_PER_AUTHOR})")
if not candidates or original_query_embedding is None:
logging.warning("rerank_with_context called with no candidates or no query embedding.")
return candidates[:target_n_results] if candidates else []
# --- Phase 1: Calculate Initial Similarities and Find Range ---
initial_similarities = []
processed_candidates_phase1 = []
logging.debug("Phase 1: Calculating initial similarities...")
for i, candidate in enumerate(candidates):
initial_distance = candidate.get('distance')
if initial_distance is None or not isinstance(initial_distance, (float, int)) or initial_distance < 0: initial_similarity = 0.0
else: initial_similarity = max(0.0, 1.0 - float(initial_distance)) # Convert distance to similarity (lower distance = higher similarity)
candidate['initial_similarity'] = initial_similarity
initial_similarities.append(initial_similarity)
processed_candidates_phase1.append(candidate)
min_initial_sim = min(initial_similarities) if initial_similarities else 0.0
max_initial_sim = max(initial_similarities) if initial_similarities else 0.0
logging.debug(f"Initial Similarity Range: Min={min_initial_sim:.4f}, Max={max_initial_sim:.4f}")
# --- Phase 2: Calculate Combined Neighbor Similarities ---
passage_data_map = {str(cand['id']): {'doc': cand.get('document'), 'meta': cand.get('metadata', {})} for cand in processed_candidates_phase1}
neighbor_embeddings_cache = {}
all_neighbor_ids_to_fetch = set()
candidate_neighbor_map = defaultdict(lambda: {'prev': [], 'next': []})
potential_neighbor_distances = {}
# Pass 2.1: Identify neighbors
for candidate in processed_candidates_phase1:
try:
center_id_str = str(candidate['id'])
center_id_int = int(center_id_str)
potential_neighbor_distances[center_id_str] = {}
for dist in range(1, window_size + 1):
prev_id_int, next_id_int = center_id_int - dist, center_id_int + dist
if prev_id_int >= 0:
prev_id_str = str(prev_id_int); all_neighbor_ids_to_fetch.add(prev_id_str); candidate_neighbor_map[center_id_str]['prev'].append(prev_id_str); potential_neighbor_distances[center_id_str][prev_id_str] = dist
next_id_str = str(next_id_int); all_neighbor_ids_to_fetch.add(next_id_str); candidate_neighbor_map[center_id_str]['next'].append(next_id_str); potential_neighbor_distances[center_id_str][next_id_str] = dist
candidate_neighbor_map[center_id_str]['prev'].sort(key=int, reverse=True)
candidate_neighbor_map[center_id_str]['next'].sort(key=int)
except (ValueError, TypeError):
logging.warning(f"Could not parse candidate ID {candidate.get('id')} as integer for neighbor finding.")
continue
# Pass 2.2: Fetch neighbor data (embeddings, docs, metas)
ids_needed_for_fetch = list(all_neighbor_ids_to_fetch)
if ids_needed_for_fetch:
fetched_embeddings = fetch_embeddings_for_ids(tuple(ids_needed_for_fetch)); neighbor_embeddings_cache.update(fetched_embeddings)
ids_to_fetch_docs_meta = [nid for nid in ids_needed_for_fetch if nid not in passage_data_map]
if ids_to_fetch_docs_meta:
fetched_neighbor_docs_meta = fetch_multiple_passage_data(ids_to_fetch_docs_meta); passage_data_map.update(fetched_neighbor_docs_meta)
# Pass 2.3: Calculate combined similarity per candidate and construct context block
combined_neighbor_similarities = []
scored_candidates = []
logging.debug("Phase 2: Calculating combined neighbor similarities and constructing context blocks...")
for candidate in processed_candidates_phase1:
try:
center_id_str = str(candidate['id'])
center_meta = candidate.get('metadata', {})
total_weighted_similarity = 0.0
total_weight = 0.0
candidate_neighbors_dist = potential_neighbor_distances.get(center_id_str, {})
# Calculate weighted neighbor similarity
for neighbor_id_str, dist_level in candidate_neighbors_dist.items():
neighbor_emb = neighbor_embeddings_cache.get(neighbor_id_str)
neighbor_data = passage_data_map.get(neighbor_id_str)
if neighbor_emb is not None and neighbor_data:
neighbor_meta = neighbor_data.get('meta')
neighbor_doc = neighbor_data.get('doc')
if (neighbor_meta is not None and compare_passage_metadata(center_meta, neighbor_meta)
and neighbor_doc and isinstance(neighbor_doc, str) and len(neighbor_doc) >= min_chars_neighbor):
neighbor_sim_to_query = cosine_similarity_np(original_query_embedding, neighbor_emb)
current_decay = max(0.0, 1.0 - ((dist_level - 1) * decay_factor))
current_weight = current_decay # Weight by decayed distance
total_weighted_similarity += neighbor_sim_to_query * current_weight
total_weight += current_weight
combined_sim = total_weighted_similarity / total_weight if total_weight > 0 else 0.0
candidate['combined_neighbor_similarity'] = combined_sim
combined_neighbor_similarities.append(combined_sim)
# Construct context block for this candidate using ALL neighbors (even short ones)
context_block_text = _construct_passage_block(center_id_str, passage_data_map, candidate_neighbor_map)
candidate['context_block'] = context_block_text
scored_candidates.append(candidate)
except Exception as e:
logging.error(f"Error processing candidate ID {candidate.get('id')} during neighbor scoring/context block: {e}", exc_info=True)
candidate['combined_neighbor_similarity'] = 0.0
combined_neighbor_similarities.append(0.0)
candidate['context_block'] = "_Fehler bei Kontext-Erstellung_"
scored_candidates.append(candidate)
# --- Phase 3: Find Context Score Range ---
min_combined_sim = min(combined_neighbor_similarities) if combined_neighbor_similarities else 0.0
max_combined_sim = max(combined_neighbor_similarities) if combined_neighbor_similarities else 0.0
logging.debug(f"Combined Neighbor Similarity Range: Min={min_combined_sim:.4f}, Max={max_combined_sim:.4f}")
# --- Phase 4: Normalize and Combine Scores ---
logging.debug("Phase 4: Normalizing and combining scores...")
initial_range = max_initial_sim - min_initial_sim
combined_range = max_combined_sim - min_combined_sim
for candidate in scored_candidates:
try:
initial_sim = candidate.get('initial_similarity', 0.0)
combined_sim = candidate.get('combined_neighbor_similarity', 0.0)
initial_norm = 0.5 # Default to 0.5 if range is zero
if initial_range > 1e-9:
initial_norm = max(0.0, min(1.0, (initial_sim - min_initial_sim) / initial_range))
combined_norm = 0.5 # Default to 0.5 if range is zero
if combined_range > 1e-9:
combined_norm = max(0.0, min(1.0, (combined_sim - min_combined_sim) / combined_range))
# Additive combination based on weight
final_similarity = (1.0 - weight) * initial_norm + weight * combined_norm
candidate['final_similarity'] = final_similarity
# logging.debug(f"Candidate ID {candidate.get('id')}: Initial Norm={initial_norm:.4f}, Combined Norm={combined_norm:.4f}, Final Score={final_similarity:.4f}")
except Exception as e:
logging.error(f"Error calculating final similarity for candidate ID {candidate.get('id')}: {e}", exc_info=True)
candidate['final_similarity'] = -1.0 # Penalize on error
# --- Phase 5: Group by ID and Select Best Representative ---
logging.debug("Phase 5: Grouping by ID and selecting best representative...")
best_candidate_by_id = {}
for candidate in scored_candidates:
center_id = candidate.get('id')
current_score = candidate.get('final_similarity', -1.0)
if not center_id:
logging.warning(f"Skipping candidate with missing ID: {candidate}")
continue
existing_candidate = best_candidate_by_id.get(center_id)
# Keep the candidate with the highest final_similarity for each unique ID
if not existing_candidate or current_score > existing_candidate.get('final_similarity', -1.0):
best_candidate_by_id[center_id] = candidate
unique_best_candidates = list(best_candidate_by_id.values())
logging.info(f"Reduced {len(scored_candidates)} candidates to {len(unique_best_candidates)} unique ID representatives.")
# --- Phase 6: Sort Unique Representatives ---
unique_best_candidates.sort(key=lambda x: x.get('final_similarity', -1.0), reverse=True)
logging.debug(f"Sorted {len(unique_best_candidates)} unique representatives by score.")
# --- Phase 7: Apply Author Quota ---
logging.debug(f"Phase 7: Applying author quota (max {MAX_RESULTS_PER_AUTHOR} per author)...")
author_counts = defaultdict(int)
final_diverse_results = []
authors_seen_in_final = set()
for candidate in unique_best_candidates:
# Stop if we already have enough results
if len(final_diverse_results) >= target_n_results:
logging.debug(f"Reached target result count {target_n_results}. Stopping quota application.")
break
meta = candidate.get('metadata', {})
# Use author 'Unknown' if metadata or author key is missing
author = meta.get('author', 'Unknown')
if author_counts[author] < MAX_RESULTS_PER_AUTHOR:
final_diverse_results.append(candidate)
author_counts[author] += 1
authors_seen_in_final.add(author)
# logging.debug(f"Added candidate ID {candidate.get('id')} from author '{author}'. Count: {author_counts[author]}")
# else:
# logging.debug(f"Skipping candidate ID {candidate.get('id')} from author '{author}' due to quota ({author_counts[author]}).")
logging.info(f"Quota applied. Selected {len(final_diverse_results)} results from {len(authors_seen_in_final)} unique authors.")
# Return the quota-filtered list
return final_diverse_results # No need to slice again, loop breaks at target_n_results
# --- Modified Format Context for Reading Area (Revision 6 - HTML Output) ---
def format_context_markdown(passages_state_list, query_embedding):
"""Formats a list of paragraph sentences for HTML display with dynamic highlighting.
Uses class/data-id for JS event listeners."""
logging.info(f"Formatting context HTML for {len(passages_state_list)} passages.")
# --- Validate Query Embedding (same) ---
is_query_embedding_valid = False
query_embedding_np = None
if isinstance(query_embedding, (list, np.ndarray)):
try:
query_embedding_np = np.array(query_embedding, dtype=np.float32)
if query_embedding_np.ndim == 1 and query_embedding_np.size > 0:
is_query_embedding_valid = True
logging.debug(f"Query embedding is valid (Shape: {query_embedding_np.shape}). Highlighting enabled.")
else: logging.warning("Query embedding received but is empty or has wrong dimensions. Highlighting disabled.")
except Exception as e:
logging.error(f"Error converting or checking query embedding: {e}. Highlighting disabled.")
else: logging.warning(f"Query embedding is type {type(query_embedding)}. Highlighting disabled.")
if not passages_state_list:
return "<div>_Kein Kontext zum Anzeigen._</div>" # Return valid HTML
# --- Step 1: Calculate all similarities and find relevant range (same) ---
sentence_similarities = {}
scores_above_threshold = []
if is_query_embedding_valid:
logging.debug("Calculating similarities for dynamic highlighting...")
for i, sentence_data in enumerate(passages_state_list):
sentence_embedding = sentence_data.get('embedding')
sentence_id = sentence_data.get('id', f'index_{i}') # Use index if ID missing
sentence_role = sentence_data.get('role', 'context')
# Skip markers or sentences without embeddings
if sentence_role == 'missing' or sentence_embedding is None:
continue
try:
similarity_score = cosine_similarity_np(query_embedding_np, sentence_embedding)
sentence_similarities[i] = similarity_score # Store score by index
if similarity_score >= HIGHLIGHT_SIMILARITY_THRESHOLD:
scores_above_threshold.append(similarity_score)
except Exception as e:
logging.warning(f"Error calculating similarity for sentence ID {sentence_id} (Index {i}): {e}")
max_relevant_score = -1.0
min_relevant_score = HIGHLIGHT_SIMILARITY_THRESHOLD
if scores_above_threshold:
max_relevant_score = max(scores_above_threshold)
logging.debug(f"Dynamic Highlighting: Min Relevant Score (Threshold) = {min_relevant_score:.4f}, Max Relevant Score = {max_relevant_score:.4f}")
else:
logging.debug("Dynamic Highlighting: No sentences met the similarity threshold.")
# --- Step 2: Format output as HTML ---
# Ensure passages are sorted correctly
passages_state_list.sort(key=lambda x: (x.get('paragraph_index', -1), x.get('sentence_sort_key', float('inf'))))
output_parts = []
current_paragraph_index = None
previous_section = "__INITIAL_NONE__"
previous_title = "__INITIAL_NONE__"
is_first_paragraph_overall = True
PLACEHOLDERS_TO_IGNORE = {"unknown", "n/a", "", None}
is_paragraph_open = False # Track if we need to close a <p> tag
for i, sentence_data in enumerate(passages_state_list):
sentence_doc = sentence_data.get('doc', '_Text fehlt_')
sentence_meta = sentence_data.get('meta', {})
sentence_para_idx = sentence_data.get('paragraph_index')
sentence_role = sentence_data.get('role', 'context')
sentence_id = sentence_data.get('id', f'index_{i}')
# --- Handle boundary markers (as HTML) ---
if sentence_role == 'missing':
if is_paragraph_open:
output_parts.append("</p>\n") # Close previous paragraph
is_paragraph_open = False
output_parts.append(f"<p><em>{html.escape(sentence_doc)}</em></p>\n") # Use <em> for italics
current_paragraph_index = None
is_first_paragraph_overall = True
# No need for extra newlines between markers in HTML, <p> handles blocks
# if i < len(passages_state_list) - 1: output_parts.append("<br><br>") # Optional: explicit vertical space
continue
# --- Check for Paragraph Start and Handle Headings/Separators (as HTML) ---
is_new_paragraph = (sentence_para_idx is not None and sentence_para_idx != current_paragraph_index)
if is_new_paragraph:
if is_paragraph_open:
output_parts.append("</p>\n") # Close previous paragraph
is_paragraph_open = False
current_section = sentence_meta.get('section')
current_title = sentence_meta.get('title')
norm_prev_section = None if str(previous_section).strip().lower() in PLACEHOLDERS_TO_IGNORE else previous_section
norm_prev_title = None if str(previous_title).strip().lower() in PLACEHOLDERS_TO_IGNORE else previous_title
norm_curr_section = None if str(current_section).strip().lower() in PLACEHOLDERS_TO_IGNORE else current_section
norm_curr_title = None if str(current_title).strip().lower() in PLACEHOLDERS_TO_IGNORE else current_title
section_changed = (norm_curr_section != norm_prev_section)
title_changed = (norm_curr_title != norm_prev_title)
# --- REMOVED/COMMENTED OUT: This is where the <hr> was added ---
# if not is_first_paragraph_overall:
# if section_changed or title_changed:
# output_parts.append("<hr>\n") # Use <hr> for separator
# --- END REMOVED/COMMENTED OUT ---
heading_parts_to_add = []
if section_changed and norm_curr_section is not None:
heading_parts_to_add.append(f"<h3>{html.escape(str(norm_curr_section))}</h3>\n") # Use <h3>
if title_changed and norm_curr_title is not None:
title_str = str(norm_curr_title).strip()
title_display = html.escape(title_str)
try: title_display = html.escape(str(int(title_str))) # Attempt int cast if relevant
except (ValueError, TypeError): pass # Keep string if not int
heading_parts_to_add.append(f"<h4>{title_display}</h4>\n") # Use <h4>
if heading_parts_to_add:
output_parts.extend(heading_parts_to_add)
output_parts.append("<p>") # Open new paragraph tag
is_paragraph_open = True
previous_section = current_section
previous_title = current_title
current_paragraph_index = sentence_para_idx
is_first_paragraph_overall = False
elif not is_paragraph_open:
# Handle case where first item is not a paragraph start marker
output_parts.append("<p>")
is_paragraph_open = True
# --- Sentence Formatting and DYNAMIC Highlighting (as HTML Spans) ---
# Build attributes for the SINGLE span element
span_classes = ["clickable-sentence"]
# Use inline style for cursor:pointer for simplicity, although CSS is also fine
# style_parts = ["cursor:pointer;"] # <-- Moved cursor to CSS
style_parts = []
safe_doc = html.escape(sentence_doc)
current_score = sentence_similarities.get(i)
# Determine if highlighting should be applied
apply_highlight = is_query_embedding_valid and current_score is not None and current_score >= min_relevant_score
alpha = 0.0
if apply_highlight:
try:
if max_relevant_score > min_relevant_score:
normalized_score = (current_score - min_relevant_score) / (max_relevant_score - min_relevant_score)
alpha = HIGHLIGHT_MIN_ALPHA + normalized_score * (HIGHLIGHT_MAX_ALPHA - HIGHLIGHT_MIN_ALPHA)
alpha = max(HIGHLIGHT_MIN_ALPHA, min(alpha, HIGHLIGHT_MAX_ALPHA))
elif max_relevant_score == min_relevant_score:
alpha = HIGHLIGHT_MIN_ALPHA
except Exception as e:
logging.warning(f"Error calculating dynamic highlighting alpha for sentence ID {sentence_id}: {e}")
alpha = 0.0 # Disable highlighting on error
# Apply highlighting by adding the class and style properties (including the CSS variable)
if alpha > 0:
span_classes.append("highlighted")
# Add dynamic styles (padding, border-radius, box-decoration-break) to style_parts
style_parts.append("padding: 1px 3px;")
style_parts.append("border-radius: 3px;")
style_parts.append("box-decoration-break: clone;")
style_parts.append("-webkit-box-decoration-break: clone;")
# Set the CSS variable for the alpha
style_parts.append(f"--highlight-alpha: {alpha:.2f};")
# DO NOT set background-color here - it's set in CSS using the variable
# Join the classes and styles
class_str = " ".join(span_classes)
style_str = " ".join(style_parts)
# Construct the single span element
# ADDED cursor: pointer to CSS, removed from inline style below
formatted_sentence = (
f'<span class="{class_str}" data-id="{sentence_id}" style="{style_str}">'
f"{safe_doc}</span>"
)
# --- Append Formatted Sentence with Spacing (handle HTML spaces) ---
# Add a space before if not the first sentence in the paragraph
if not is_new_paragraph and is_paragraph_open and i > 0 and passages_state_list[i-1].get('role') != 'missing' and sentence_role != 'missing':
# Find the previous non-missing sentence to check if it was the end of a paragraph block
prev_valid_sentence_index = i - 1
while prev_valid_sentence_index >= 0 and passages_state_list[prev_valid_sentence_index].get('role') == 'missing':
prev_valid_sentence_index -= 1
# Add a space unless the previous element was a heading, hr, or paragraph open tag
# This check is implicitly handled by the is_new_paragraph logic and checking if is_paragraph_open.
# If it's not a new paragraph and the paragraph is open, we generally want a space.
if prev_valid_sentence_index >= 0 and passages_state_list[prev_valid_sentence_index].get('paragraph_index') == sentence_para_idx:
output_parts.append(" ")
# No space needed if it's the very first item in a paragraph after a break/heading
output_parts.append(formatted_sentence)
# Close the last paragraph tag if it was opened
if is_paragraph_open:
output_parts.append("</p>\n")
# Wrap everything in a main div for robustness
return "<div>\n" + "".join(output_parts) + "</div>"
# --- Internal Search Helper ---
def _perform_single_query_search(query, where_filter, n_results):
"""Performs a single vector query against ChromaDB, returning processed results."""
logging.info(f"Performing single query search for: '{query[:50]}...' (n_results={n_results}, filter={where_filter})")
if collection is None:
logging.error("ChromaDB collection is not available for query.")
raise ConnectionError("DB not available.")
if not query:
logging.error("Cannot perform search with an empty query.")
return [] # Return empty list for empty query
# Get query embedding (handles errors internally)
query_embedding = get_embedding(query, task="RETRIEVAL_QUERY")
logging.debug(f"Inside _perform_single_query_search: Generated query embedding. Type: {type(query_embedding)}, Is None: {query_embedding is None}")
if isinstance(query_embedding, list): logging.debug(f" Embedding length: {len(query_embedding)}")
if query_embedding is None:
# Embedding failed, cannot proceed with query
raise ValueError(f"Embedding generation failed for query: '{query[:50]}...'")
try:
results = collection.query(
query_embeddings=[query_embedding],
n_results=n_results,
where=where_filter, # Apply filter if provided
include=['documents', 'metadatas', 'distances'] # Fetch necessary fields
)
processed_results = []
# Results structure: {'ids': [[]], 'documents': [[]], ...}
# Check if results and the first list within 'ids' exist and are not empty
if results and results.get('ids') and results['ids'] and results['ids'][0]:
# Extract the lists for the single query
ids_list = results['ids'][0]
docs_list = results.get('documents', [[]])[0] or [] # Use default empty list
metadatas_list = results.get('metadatas', [[]])[0] or []
distances_list = results.get('distances', [[]])[0] or []
num_found = len(ids_list)
# Robustness check on list lengths
if not (num_found == len(docs_list) == len(metadatas_list) == len(distances_list)):
logging.warning(f"ChromaDB result length mismatch: {num_found} IDs, {len(docs_list)} docs, {len(metadatas_list)} metas, {len(distances_list)} dists. Processing cautiously.")
num_found = min(num_found, len(docs_list), len(metadatas_list), len(distances_list))
ids_list = ids_list[:num_found] # Truncate lists to match
logging.info(f"ChromaDB query returned {len(ids_list)} results.")
for i, res_id in enumerate(ids_list):
# Check bounds just in case, though clamping should prevent IndexError
if i >= num_found: break
doc = docs_list[i] if docs_list[i] is not None else "_Text fehlt_"
meta = metadatas_list[i] if metadatas_list[i] is not None else {}
dist = distances_list[i] if distances_list[i] is not None else float('inf')
# Basic validation
if res_id is None: logging.warning(f"Skipping result with None ID at index {i}"); continue
res_id_str = str(res_id) # Ensure ID is string
if doc == "_Text fehlt_": logging.warning(f"Missing document for ID {res_id_str} at index {i}")
if dist == float('inf'): logging.warning(f"Missing distance for ID {res_id_str} at index {i}")
processed_results.append({
"id": res_id_str, # Store ID as string
"document": doc,
"metadata": meta,
"distance": dist
})
else:
logging.info(f"Query '{query[:50]}...' returned no results from ChromaDB.")
return processed_results
except Exception as e:
logging.error(f"Error during ChromaDB query for '{query[:50]}...': {e}", exc_info=True)
if "dimension" in str(e).lower():
logging.error("Query failed possibly due to embedding dimension mismatch.")
raise ValueError(f"Dimension mismatch error for query '{query[:50]}...'")
raise RuntimeError(f"DB search error for query '{query[:50]}...': {type(e).__name__}")
# --- Helper Function: Construct Passage Block ---
def _construct_passage_block(center_id_str, passage_data_map, candidate_neighbor_map):
"""Constructs a continuous text block including neighbors for a given center passage."""
center_data = passage_data_map.get(center_id_str)
if not center_data:
logging.warning(f"_construct_passage_block: Missing data for center ID {center_id_str}.")
return "_Zentrumstext fehlt_"
center_meta = center_data.get('meta', {})
center_text = center_data.get('doc')
if not center_text or center_text == "_Text fehlt_":
logging.warning(f"_construct_passage_block: Missing document text for center ID {center_id_str}.")
return "_Zentrumstext fehlt_"
block_text_parts = []
neighbors = candidate_neighbor_map.get(center_id_str, {'prev': [], 'next': []})
# Add previous neighbors (if metadata matches) - Iterate in original order (closest first) and insert at beginning
# Note: Sorting neighbors.get('prev', []) by int() ensures chronological order
for prev_id in sorted(neighbors.get('prev', []), key=int):
prev_data = passage_data_map.get(prev_id)
if prev_data and compare_passage_metadata(center_meta, prev_data.get('meta', {})):
prev_text = prev_data.get('doc')
if prev_text and prev_text != "_Text fehlt_":
block_text_parts.append(prev_text) # Add to the end temporarily
# Add the center text
block_text_parts.append(center_text)
# Add next neighbors (if metadata matches) - Iterate in original order (closest first) and append
for next_id in sorted(neighbors.get('next', []), key=int):
next_data = passage_data_map.get(next_id)
if next_data and compare_passage_metadata(center_meta, next_data.get('meta', {})):
next_text = next_data.get('doc')
if next_text and next_text != "_Text fehlt_":
block_text_parts.append(next_text) # Add to the end
# Join the parts into a single string for the block
continuous_block_text = " ".join(block_text_parts)
if not continuous_block_text.strip():
logging.warning(f"_construct_passage_block: Constructed empty passage block for center ID {center_id_str}.")
return "_Leerer Kontextblock_"
return continuous_block_text
# --- Modified Core Search Logic (Standard Mode) ---
def perform_search_standard(query, selected_authors, window_size, weight, decay, n_results=MAX_RESULTS_STANDARD):
"""Performs standard search: Embed -> Query -> Re-rank -> Return results & embedding."""
logging.info(f"--- Starting Standard Search --- Query: '{query[:50]}...' | Authors: {selected_authors} | Target Results: {n_results} | Window={window_size}, Weight={weight:.2f}, Decay={decay:.2f}")
original_query_embedding = None
try:
# Phase 1: Get Query Embedding
original_query_embedding = get_embedding(query, task="RETRIEVAL_QUERY")
if original_query_embedding is None:
raise ValueError("Failed to generate query embedding for standard search.")
# Phase 2: Build Filter
where_filter = None
if selected_authors:
authors_filter_list = selected_authors if isinstance(selected_authors, list) else [selected_authors]
authors_filter_list = [a for a in authors_filter_list if a and isinstance(a, str)]
if authors_filter_list:
where_filter = {"author": {"$in": authors_filter_list}}
logging.info(f"Applying author filter: {where_filter}")
else:
logging.warning("Empty or invalid author filter list provided, searching all authors.")
# Phase 3: Initial Search
logging.info(f"Fetching initial {INITIAL_RESULTS_FOR_RERANK} candidates from DB.")
initial_candidates = _perform_single_query_search(query, where_filter, INITIAL_RESULTS_FOR_RERANK)
if not initial_candidates:
logging.info("Standard Search: No initial results found from DB.")
return [], original_query_embedding
logging.info(f"Found {len(initial_candidates)} initial candidates. Proceeding to 1st pass re-ranking.")
# Phase 4: Contextual Re-ranking (1st Pass)
reranked_results = rerank_with_context(
initial_candidates,
original_query_embedding,
n_results, # Target number of final results
weight, # Use argument
decay, # Use argument
window_size, # Use argument
MIN_CHARS_FOR_RELEVANT_NEIGHBOR # Pass constant
)
logging.info(f"Standard Search: Re-ranked {len(initial_candidates)} -> Found {len(reranked_results)} final results.")
return reranked_results, original_query_embedding
except (ConnectionError, ValueError, RuntimeError) as e:
logging.error(f"Standard Search failed: {e}", exc_info=False)
return [], original_query_embedding
except Exception as e:
logging.error(f"Standard Search encountered an unexpected error: {e}", exc_info=True)
return [], original_query_embedding
# --- Search Function (Standard Mode UI Wrapper) ---
def search_standard_mode_ui(search_results, query_embedding):
"""Prepares Gradio UI updates for the Standard Search results."""
logging.info("Preparing UI updates for Standard Search results.")
updates = create_reset_updates() # Start with a clean reset state dictionary
# Store the received embedding (if valid) in the state used for context highlighting
if query_embedding is not None:
updates[direct_embedding_output_holder] = query_embedding
logging.debug("Stored valid query embedding in direct_embedding_output_holder for standard mode.")
else:
updates[direct_embedding_output_holder] = None
logging.warning("Query embedding was None, stored None in direct_embedding_output_holder for standard mode.")
if not search_results:
logging.info("No standard search results found to display.")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label="Keine Resultate gefunden.", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
updates[single_result_group] = gr.update(visible=True)
# Ensure states are also reset/empty
updates[full_search_results_state] = []
updates[current_result_index_state] = 0
updates[active_view_state] = "standard" # Still set view state even if empty
return updates # Return the dictionary of updates
# Populate state and update UI elements if results were found
logging.info(f"Displaying first of {len(search_results)} standard results.")
updates[full_search_results_state] = search_results
updates[current_result_index_state] = 0 # Start at the first result
updates[active_view_state] = "standard" # Set active view state
# Format the first result for immediate display using the combined formatter
# MODIFIED: Call format_result_display and get two parts
accordion_title, accordion_content_md, text_content = format_result_display(search_results[0], 0, len(search_results), "standard")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates[result_metadata_display] = gr.update(value=accordion_content_md)
updates[result_text] = gr.update(value=text_content, visible=True)
# Make shared result group and navigation visible
updates[single_result_group] = gr.update(visible=True)
updates[standard_nav_row] = gr.update(visible=True)
# Configure navigation buttons for Standard results
updates[previous_result_button] = gr.update(visible=True, interactive=False) # Can't go back from first result
updates[next_result_button] = gr.update(visible=True, interactive=(len(search_results) > 1)) # Enable if more than one result
updates[weiterlesen_button] = gr.update(visible=True, interactive=True, value="weiterlesen") # Enable context button, ensure value
return updates # Return the dictionary of updates
# --- Modified Core Search Logic (LLM Mode) ---
def perform_search_llm(query, selected_authors, window_size, weight, decay):
"""Performs LLM Re-Rank Search: Embed -> Query -> Re-rank -> Prep -> LLM -> Parse -> Return results & embedding."""
logging.info(f"--- Starting LLM Re-Rank Search --- Query: '{query[:50]}...' | Authors: {selected_authors} | Window={window_size}, Weight={weight:.2f}, Decay={decay:.2f}")
original_query_embedding = None
# --- Phase 0: Get Query Embedding ---
try:
original_query_embedding = get_embedding(query, task="RETRIEVAL_QUERY")
if original_query_embedding is None:
raise ValueError("Embedding failed for LLM search.")
logging.info("Query embedding generated successfully for LLM search.")
except Exception as embed_e:
logging.error(f"LLM Re-Rank: Embedding error: {embed_e}", exc_info=True)
return None, original_query_embedding # Return None for results to indicate failure
# --- Phase 1: Initial Search, Filter & First-Pass Re-ranking ---
try:
logging.info(f"LLM ReRank Mode: Initial search for query: '{query[:50]}...'")
# Build Filter
where_filter = None
if selected_authors:
authors_filter_list = selected_authors if isinstance(selected_authors, list) else [selected_authors]
authors_filter_list = [a for a in authors_filter_list if a and isinstance(a, str)]
if authors_filter_list:
where_filter = {"author": {"$in": authors_filter_list}}
logging.info(f"LLM ReRank: Applying WHERE filter: {where_filter}")
else: logging.warning("Empty or invalid author filter list for LLM rerank.")
# Initial DB Search
initial_candidates = _perform_single_query_search(query, where_filter, INITIAL_RESULTS_FOR_RERANK)
if not initial_candidates:
logging.info("LLM ReRank Mode: No initial results found from DB.")
return [], original_query_embedding
logging.info(f"Found {len(initial_candidates)} initial candidates. Performing 1st pass re-ranking...")
# First-Pass Re-ranking (Pass new arguments)
first_pass_reranked = rerank_with_context(
initial_candidates,
original_query_embedding,
LLM_RERANK_CANDIDATE_COUNT, # Target N for LLM input pool
weight, # Use argument
decay, # Use argument
window_size, # Use argument
MIN_CHARS_FOR_RELEVANT_NEIGHBOR # Pass constant
)
# Select the top candidates to send to the LLM
candidates_for_llm = first_pass_reranked[:LLM_RERANK_CANDIDATE_COUNT]
if not candidates_for_llm:
logging.info("LLM ReRank Mode: No candidates left after first-pass re-ranking.")
return [], original_query_embedding
logging.info(f"Selected top {len(candidates_for_llm)} candidates after 1st pass for LLM.")
except (ConnectionError, ValueError, RuntimeError) as search_filter_e:
logging.error(f"LLM Re-Rank: Initial Search/Filter/Re-rank error: {search_filter_e}", exc_info=True)
return None, original_query_embedding # Return None for results to indicate failure
except Exception as e:
logging.error(f"LLM Re-Rank: Unexpected error in Phase 1 (Search/Filter/Re-rank): {e}", exc_info=True)
return None, original_query_embedding # Return None for results to indicate failure
# --- Phase 2: Prepare Passage Blocks for LLM Prompt ---
try:
logging.info("Preparing passage blocks for LLM prompt using pre-constructed blocks...")
passage_separator = "\n\n--- PASSAGE SEPARATOR ---\n\n"
prompt_passage_blocks_list = []
for cand_data in candidates_for_llm:
center_id_str = cand_data.get('id')
context_block = cand_data.get('context_block')
if not center_id_str or not context_block or context_block in ["_Kontextblock fehlt_", "_Fehler bei Kontext-Erstellung_"]:
logging.warning(f"Skipping candidate {center_id_str} for LLM prompt due to missing ID or invalid context block.")
continue
prompt_block = f"Passage ID: {center_id_str}\nPassage Text:\n{context_block}"
prompt_passage_blocks_list.append(prompt_block)
if not prompt_passage_blocks_list:
logging.warning("No valid context blocks could be prepared for the LLM prompt.")
return [], original_query_embedding
passage_blocks_str_for_prompt = passage_separator.join(prompt_passage_blocks_list)
logging.info(f"Prepared {len(prompt_passage_blocks_list)} passage blocks for the LLM.")
except Exception as e:
logging.error(f"LLM Re-Rank: Error during passage block preparation (Phase 2): {e}", exc_info=True)
return None, original_query_embedding # Return None for results to indicate failure
# --- Phase 3: Call LLM for Re-ranking and Truncation ---
if not llm_rerank_model:
logging.error("LLM Re-rank model is not available/initialized.")
return None, original_query_embedding # Return None for results to indicate failure
try:
# Format the final prompt using the template
rerank_prompt = LLM_RERANKING_PROMPT_TEMPLATE_V3.format(
user_query=query,
passage_blocks_str=passage_blocks_str_for_prompt, # Use constructed string
target_count=LLM_RERANK_TARGET_COUNT # Use constant
)
logging.debug(f"LLM Rank/Truncate Prompt (first 500 chars):\n{rerank_prompt[:500]}...")
# Save the full prompt to a file for debugging
try:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = os.path.join(PROMPT_LOG_DIR, f"{timestamp}_llm_rank_truncate_prompt.txt")
with open(filename, 'w', encoding='utf-8') as f:
f.write(f"--- User Query ---\n{query}\n\n--- Prompt Sent to LLM ({LLM_RERANK_MODEL_NAME}) ---\n{rerank_prompt}")
logging.info(f"LLM Rank/Truncate prompt saved to: {filename}")
except IOError as log_e:
logging.error(f"Error saving LLM Rank/Truncate prompt: {log_e}", exc_info=False)
# Make the API call to Gemini
logging.info(f"Sending Rank/Truncate request to LLM ({LLM_RERANK_MODEL_NAME})...")
generation_config = genai.types.GenerationConfig(temperature=0.2)
response = llm_rerank_model.generate_content(
rerank_prompt,
generation_config=generation_config
)
logging.info("LLM Rank/Truncate response received.")
# --- Phase 4: Parse LLM Response and Fetch Metadata ---
logging.info("Processing LLM response...")
# ---> START OF ROBUST RESPONSE HANDLING <---
response_text = None
finish_reason_name = 'UNKNOWN'
try:
if hasattr(response, 'prompt_feedback') and getattr(response.prompt_feedback, 'block_reason', None):
block_reason = response.prompt_feedback.block_reason
finish_reason_name = f"PROMPT_BLOCKED_{block_reason}"
logging.error(f"LLM Rank/Truncate prompt was blocked! Reason: {block_reason}")
return [], original_query_embedding # Return empty
elif response.candidates:
first_candidate = response.candidates[0]
reason_enum = getattr(first_candidate, 'finish_reason', None)
finish_reason_name = getattr(reason_enum, 'name', str(reason_enum))
VALID_FINISH_REASONS = {"STOP", "MAX_TOKENS"}
if finish_reason_name in VALID_FINISH_REASONS:
if first_candidate.content and first_candidate.content.parts:
response_text = first_candidate.content.parts[0].text
logging.debug("Successfully extracted text from the first candidate.")
else:
logging.warning("LLM candidate finished validly buthad no text content part.")
response_text = None
else:
logging.warning(f"LLM Rank/Truncate candidate finished with reason: {finish_reason_name}. No text content expected or extracted.")
else:
logging.error("LLM response had no candidates.")
if response_text is None:
logging.error(f"LLM Rank/Truncate returned no usable text content. Final Finish Reason Check: {finish_reason_name}")
# Log response details if available for debugging
logging.debug(f"Full LLM response object structure: {response}")
return [], original_query_embedding # Return empty
except Exception as resp_check_e:
logging.error(f"Error checking LLM response structure/finish_reason: {resp_check_e}", exc_info=True)
logging.debug(f"Full LLM response object structure during check error: {response}")
return [], original_query_embedding # Return empty on error checking response
# ---> END OF ROBUST RESPONSE HANDLING <---
llm_response_text = response_text
logging.debug(f"LLM Raw Response Text (used for parsing):\n{llm_response_text}")
# --- Start JSON Parsing ---
json_string = None
parsed_llm_results = []
try:
# Attempt to find JSON inside a ```json ``` block first (preferred format)
json_match = re.search(r"```json\s*({.*?})\s*```", llm_response_text, re.DOTALL | re.IGNORECASE)
if json_match:
json_string = json_match.group(1)
logging.debug("Found JSON block using ```json ``` regex.")
else:
# If no block is found, assume the entire response is potentially JSON
json_string = llm_response_text.strip()
if not (json_string.startswith('{') and json_string.endswith('}')):
logging.warning("LLM response did not contain ```json ``` block and doesn't look like raw JSON object. Attempting parse anyway.")
else:
logging.debug("Assuming raw LLM response is JSON object.")
parsed_response = json.loads(json_string)
# Validate the top-level structure
if "ranked_edited_passages" not in parsed_response or not isinstance(parsed_response["ranked_edited_passages"], list):
logging.error("LLM JSON response missing 'ranked_edited_passages' list or it's not a list.")
raise ValueError("JSON response structure invalid: missing 'ranked_edited_passages' list.")
raw_results = parsed_response["ranked_edited_passages"]
logging.info(f"LLM returned {len(raw_results)} items in 'ranked_edited_passages'.")
# Validate and collect individual results from the list
parsed_llm_results = [] # Reset before processing
for i, item in enumerate(raw_results):
if isinstance(item, dict) and 'original_id' in item and 'edited_text' in item:
item_id = str(item['original_id']) # Ensure ID is string
item_text = str(item['edited_text'])
item_rationale = item.get('rationale', '') # Rationale is optional
# Logging for individual items
# logging.debug(f"Parsed item {i}: ID={item_id}, Text='{item_text[:50]}...', Rationale='{item_rationale[:50]}...'")
if item_id and item_text.strip(): # Only add if ID and text are non-empty
parsed_llm_results.append({'id': item_id, 'edited_text': item_text, 'rationale': item_rationale}) # Keep rationale here
else:
logging.warning(f"Skipping invalid or empty LLM result item at index {i}: {item}")
else:
logging.warning(f"Skipping item with invalid format in 'ranked_edited_passages' at index {i}: {item}")
# Truncate to the target count if needed (should be handled by LLM, but safe)
parsed_llm_results = parsed_llm_results[:LLM_RERANK_TARGET_COUNT]
logging.info(f"Successfully parsed {len(parsed_llm_results)} valid ranked/edited passages from LLM response.")
if not parsed_llm_results:
logging.info("LLM parsing yielded no valid passages.")
return [], original_query_embedding # Return empty list
except (json.JSONDecodeError, ValueError) as parse_e:
logging.error(f"LLM Rank/Truncate response JSON parsing error: {parse_e}", exc_info=True)
logging.error(f"--- LLM Response Text causing JSON error ---\n{llm_response_text}\n--- End Response ---")
return [], original_query_embedding # Return empty list on parsing error
except Exception as parse_e:
logging.error(f"Unexpected error during LLM JSON parsing: {parse_e}", exc_info=True)
return [], original_query_embedding # Return empty list on any parsing error
# --- End JSON Parsing ---
# --- Fetch Metadata for LLM Results ---
# We need the original metadata (author, book, etc.) from the DB for displaying results correctly.
result_ids_to_fetch = [res['id'] for res in parsed_llm_results]
logging.info(f"Fetching metadata directly for {len(result_ids_to_fetch)} final LLM result IDs.")
if result_ids_to_fetch:
fetched_metadata_map = fetch_multiple_passage_data(result_ids_to_fetch)
logging.debug(f"Fetched metadata map contains {len(fetched_metadata_map)} entries for final LLM results.")
else:
# If no IDs to fetch (e.g., no results parsed), return empty
logging.warning("No result IDs to fetch metadata for after LLM parsing.")
return [], original_query_embedding
# --- Combine parsed text with fetched metadata for the final UI structure ---
final_llm_results_for_ui = []
for result in parsed_llm_results:
passage_id = result['id']
passage_data = fetched_metadata_map.get(passage_id)
if passage_data:
final_llm_results_for_ui.append({
'id': passage_id, # Original ID
'original_id': passage_id, # Store original_id explicitly for formatter
'edited_text': result.get('edited_text', '_Editierter Text fehlt_'), # LLM's edited text
'rationale': result.get('rationale', ''), # LLM's rationale
'metadata': passage_data.get('meta', {}) # Original metadata from DB fetch
# Note: Distance and Initial/Final similarity from previous steps are NOT included
# as the LLM result is a new entity, not directly representing a DB passage's score.
})
else:
logging.warning(f"Could not fetch metadata from DB for final LLM result ID: {passage_id}. Skipping this result.")
if not final_llm_results_for_ui:
logging.error("Failed to fetch metadata for any of the LLM's ranked passages.")
# Still return the original query embedding if available
return [], original_query_embedding # Return empty list
# --- Success ---
logging.info(f"LLM Re-Rank Search successful. Returning {len(final_llm_results_for_ui)} processed results.")
# Return the list of results and the original query embedding
return final_llm_results_for_ui, original_query_embedding
except Exception as e:
logging.error(f"LLM Rank/Truncate general processing error after API call: {e}", exc_info=True)
# Return None for results to indicate a failure, but return embedding if available
return None, original_query_embedding
# --- Search Function (LLM Re-Rank Mode UI Wrapper) ---
def search_llm_rerank_mode_ui(llm_results, query_embedding):
"""Prepares Gradio UI updates for the LLM Re-Rank Search results."""
logging.info("Preparing UI updates for LLM Re-Rank Search results.")
updates = create_reset_updates() # Start with reset state
# Store the received embedding for context highlighting
if query_embedding is not None:
updates[direct_embedding_output_holder] = query_embedding
logging.debug("Stored valid query embedding in direct_embedding_output_holder for LLM mode.")
else:
updates[direct_embedding_output_holder] = None
logging.warning("Query embedding was None for LLM mode.")
# Set active view state early
updates[active_view_state] = "llm"
# Check if results indicate an error occurred in the core logic (returned None)
if llm_results is None:
logging.error("LLM core search logic returned None, indicating an error.")
# Use the shared display group
updates[single_result_group] = gr.update(visible=True)
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label="**Fehler:** LLM Re-Ranking fehlgeschlagen.", open=False)
updates[result_metadata_display] = gr.update(value="Details siehe Server-Logs.")
updates[result_text] = gr.update(value="", visible=True)
# Ensure states are empty
updates[llm_results_state] = []
updates[llm_result_index_state] = 0
return updates
# Check if results list is empty (no relevant passages found/parsed, but no error)
if not llm_results:
logging.info("LLM search returned no relevant passages.")
# Use the shared display group
updates[single_result_group] = gr.update(visible=True)
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label="LLM Resultate", open=False)
updates[result_metadata_display] = gr.update(value="_(Keine relevanten Passagen nach LLM Re-Ranking gefunden.)_")
updates[result_text] = gr.update(value="", visible=True)
# Ensure states are empty
updates[llm_results_state] = []
updates[llm_result_index_state] = 0
return updates
# Got results, update UI
logging.info(f"Displaying first of {len(llm_results)} LLM re-ranked results.")
updates[llm_results_state] = llm_results
updates[llm_result_index_state] = 0 # Start at first result
# Format and display the first result using the combined formatter
# MODIFIED: Call format_result_display and get two parts
accordion_title, accordion_content_md, text_content = format_result_display(llm_results[0], 0, len(llm_results), "llm")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates[result_metadata_display] = gr.update(value=accordion_content_md)
updates[result_text] = gr.update(value=text_content, visible=True)
# Make shared result group and navigation visible
updates[single_result_group] = gr.update(visible=True)
updates[standard_nav_row] = gr.update(visible=True)
# Configure navigation buttons for LLM results
updates[previous_result_button] = gr.update(visible=True, interactive=False)
updates[next_result_button] = gr.update(visible=True, interactive=(len(llm_results) > 1))
updates[weiterlesen_button] = gr.update(visible=True, interactive=True, value="im Original weiterlesen") # Enable context button, change value
return updates
# --- Result Navigation Function (Standard Mode) ---
def navigate_results(direction, current_index, full_results):
"""Handles UI updates for navigating standard search results."""
logging.info(f"Navigating standard results: Direction={direction}, Index={current_index}")
# Define default updates (hide context, show standard results, etc.)
updates = {
standard_nav_row: gr.update(visible=True), # Show the shared nav row
single_result_group: gr.update(visible=True), # Show the shared result group
# MODIFIED: Clear new components instead of single_result_display_md
result_accordion: gr.update(label="...", open=False, visible=True),
result_metadata_display: gr.update(value=""),
result_text: gr.update(value="", visible=True),
# Buttons in standard_nav_row will be managed based on index below
previous_result_button: gr.update(visible=True),
next_result_button: gr.update(visible=True),
weiterlesen_button: gr.update(visible=True, value="weiterlesen"), # Standard search weiterlesen
context_area: gr.update(visible=False), # Hide context
back_to_results_button: gr.update(visible=False), # Hide back button
current_result_index_state: current_index, # Store potentially new index
full_search_results_state: full_results, # Pass state through
active_view_state: "standard" # Ensure view state is correct
}
if not full_results or not isinstance(full_results, list):
logging.warning("Cannot navigate: No standard results available in state.")
updates[current_result_index_state] = 0
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label="Keine Resultate zum Navigieren.", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
# Hide all navigation elements in the shared row
updates[previous_result_button] = gr.update(interactive=False, visible=False)
updates[next_result_button] = gr.update(interactive=False, visible=False)
updates[weiterlesen_button] = gr.update(visible=False)
updates[standard_nav_row] = gr.update(visible=False) # Hide the nav row itself
updates[single_result_group] = gr.update(visible=False) # Hide the result group itself
return updates # Return the dictionary of updates
total_results = len(full_results)
new_index = current_index
# Calculate new index based on direction
if direction == 'previous':
new_index = max(0, current_index - 1)
elif direction == 'next':
new_index = min(total_results - 1, current_index + 1)
# Update display if index is valid
if 0 <= new_index < total_results:
result_data = full_results[new_index]
# MODIFIED: Use the combined formatter and get two parts
accordion_title, accordion_content_md, text_content = format_result_display(result_data, new_index, total_results, "standard")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates[result_metadata_display] = gr.update(value=accordion_content_md)
updates[result_text] = gr.update(value=text_content, visible=True)
updates[current_result_index_state] = new_index # Update state with new index
# Update button interactivity based on new index
updates[previous_result_button] = gr.update(interactive=(new_index > 0))
updates[next_result_button] = gr.update(interactive=(new_index < total_results - 1))
updates[weiterlesen_button] = gr.update(interactive=True) # Always possible from a result
logging.info(f"Navigated standard results to index {new_index}")
else:
# Should not happen with bounds checking, but handle defensively
logging.error(f"Navigation error: New index {new_index} out of bounds [0, {total_results-1}]")
# MODIFIED: Update new components on error
updates[result_accordion] = gr.update(visible=True, label="Fehler beim Navigieren der Resultate.", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
updates[previous_result_button] = gr.update(interactive=False)
updates[next_result_button] = gr.update(interactive=False)
updates[weiterlesen_button] = gr.update(interactive=False)
return updates
# --- Navigation Function for LLM Results ---
def navigate_llm_results(direction, current_index, llm_results):
"""Handles UI updates for navigating LLM re-ranked results."""
logging.info(f"Navigating LLM results: Direction={direction}, Index={current_index}")
# Define default updates (show LLM results, hide others)
updates = {
standard_nav_row: gr.update(visible=True), # Show the shared nav row
single_result_group: gr.update(visible=True), # Show the shared result group
# MODIFIED: Clear new components instead of single_result_display_md
result_accordion: gr.update(label="...", open=False, visible=True),
result_metadata_display: gr.update(value=""),
result_text: gr.update(value="", visible=True),
# Buttons in standard_nav_row will be managed based on index below
previous_result_button: gr.update(visible=True),
next_result_button: gr.update(visible=True),
weiterlesen_button: gr.update(visible=True, value="im Original weiterlesen"), # LLM search weiterlesen
context_area: gr.update(visible=False), # Hide context
back_to_results_button: gr.update(visible=False), # Hide back button
llm_results_state: llm_results, # Pass state through
llm_result_index_state: current_index, # Store potentially new index
active_view_state: "llm" # Ensure view state is correct
}
if not llm_results or not isinstance(llm_results, list):
logging.warning("Cannot navigate: No LLM results available in state.")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label="Keine LLM-Resultate vorhanden.", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
# Hide navigation elements in the shared row
updates[previous_result_button] = gr.update(interactive=False, visible=False)
updates[next_result_button] = gr.update(interactive=False, visible=False)
updates[weiterlesen_button] = gr.update(visible=False)
updates[standard_nav_row] = gr.update(visible=False) # Hide the nav row itself
updates[single_result_group] = gr.update(visible=False) # Hide the result group itself
# Reset state
updates[llm_results_state] = []
updates[llm_result_index_state] = 0
return updates
total_results = len(llm_results)
new_index = current_index
# Calculate new index
if direction == 'previous':
new_index = max(0, current_index - 1)
elif direction == 'next':
new_index = min(total_results - 1, current_index + 1)
# Update display if index is valid
if 0 <= new_index < total_results:
result_data = llm_results[new_index]
# MODIFIED: Use the combined formatter and get two parts
accordion_title, accordion_content_md, text_content = format_result_display(result_data, new_index, total_results, "llm")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates[result_metadata_display] = gr.update(value=accordion_content_md)
updates[result_text] = gr.update(value=text_content, visible=True)
updates[llm_result_index_state] = new_index # Update state
# Update button interactivity
updates[previous_result_button] = gr.update(interactive=(new_index > 0))
updates[next_result_button] = gr.update(interactive=(new_index < total_results - 1))
updates[weiterlesen_button] = gr.update(interactive=True)
logging.info(f"Navigated LLM results to index {new_index}")
else:
logging.error(f"LLM Navigation error: New index {new_index} out of bounds [0, {total_results-1}]")
# MODIFIED: Update new components on error
updates[result_accordion] = gr.update(visible=True, label="Fehler beim Navigieren der LLM-Resultate.", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
updates[previous_result_button] = gr.update(interactive=False)
updates[next_result_button] = gr.update(interactive=False)
updates[weiterlesen_button] = gr.update(interactive=False)
return updates
# --- Navigation Function for Favourites ---
def navigate_best_results(direction, current_index, best_results):
"""Handles UI updates for navigating favourite results."""
logging.info(f"Navigating favourite results: Direction={direction}, Index={current_index}")
# Define default updates (show favourites, hide others)
updates = {
standard_nav_row: gr.update(visible=True), # Show the shared nav row
single_result_group: gr.update(visible=True), # Show the shared result group
# MODIFIED: Clear new components instead of single_result_display_md
result_accordion: gr.update(label="...", open=False, visible=True),
result_metadata_display: gr.update(value=""),
result_text: gr.update(value="", visible=True),
# Buttons in standard_nav_row will be managed based on index below
previous_result_button: gr.update(visible=True),
next_result_button: gr.update(visible=True),
weiterlesen_button: gr.update(visible=True, value="weiterlesen"), # Favourites weiterlesen
context_area: gr.update(visible=False), # Hide context
back_to_results_button: gr.update(visible=False), # Hide back button
best_results_state: best_results, # Pass state through
best_index_state: current_index, # Store potentially new index
active_view_state: "favourites" # Ensure view state is correct
}
if not best_results or not isinstance(best_results, list):
logging.warning("Cannot navigate: No favourite results available in state.")
updates[best_index_state] = 0
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label="_Keine Favoriten zum Navigieren._", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
# Hide navigation elements in the shared row
updates[previous_result_button] = gr.update(interactive=False, visible=False)
updates[next_result_button] = gr.update(interactive=False, visible=False)
updates[weiterlesen_button] = gr.update(visible=False)
updates[standard_nav_row] = gr.update(visible=False) # Hide the nav row itself
updates[single_result_group] = gr.update(visible=False) # Hide the result group itself
# Reset state
updates[best_results_state] = []
updates[best_index_state] = 0
return updates
total_results = len(best_results)
new_index = current_index
# Calculate new index
if direction == 'previous':
new_index = max(0, current_index - 1)
elif direction == 'next':
new_index = min(total_results - 1, current_index + 1)
# Update display if index is valid
if 0 <= new_index < total_results:
result_data = best_results[new_index]
# MODIFIED: Use the combined formatter and get two parts
accordion_title, accordion_content_md, text_content = format_result_display(result_data, new_index, total_results, "favourites")
# MODIFIED: Update new components
updates[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates[result_metadata_display] = gr.update(value=accordion_content_md)
updates[result_text] = gr.update(value=text_content, visible=True)
updates[best_index_state] = new_index # Update state
# Update button interactivity
updates[previous_result_button] = gr.update(interactive=(new_index > 0))
updates[next_result_button] = gr.update(interactive=(new_index < total_results - 1))
updates[weiterlesen_button] = gr.update(interactive=True) # Always possible from a favourite
logging.info(f"Navigated favourite results to index {new_index}")
else:
logging.error(f"Favourite Navigation error: New index {new_index} out of bounds [0, {total_results-1}]")
# MODIFIED: Update new components on error
updates[result_accordion] = gr.update(visible=True, label="Fehler beim Navigieren der Favoriten.", open=False)
updates[result_metadata_display] = gr.update(value="")
updates[result_text] = gr.update(value="", visible=True)
updates[previous_result_button] = gr.update(interactive=False)
updates[next_result_button] = gr.update(interactive=False)
updates[weiterlesen_button] = gr.update(interactive=False)
return updates
# --- Move Standard Result to Reading Area (UI Logic) ---
def move_to_reading_area_ui(current_index, full_results, query_embedding_value, result_type):
"""Handles UI updates and data fetching for moving a result (Standard, LLM, or Favourite)
to the context reading area."""
logging.info(f"--- Moving {result_type} Result (Index: {current_index}) to Reading Area ---")
# Define UI changes: Hide results, show context area, set loading message
updates = {
standard_nav_row: gr.update(visible=False), # Hide the shared results nav
single_result_group: gr.update(visible=False), # Hide the shared results group
context_area: gr.update(visible=True), # Show context area immediately
context_display: gr.update(value="Lade Paragraphen..."), # Loading message
load_previous_button: gr.update(visible=True, interactive=True),
load_next_button: gr.update(visible=True, interactive=True),
back_to_results_button: gr.update(visible=True, interactive=True)
}
# Define state changes separately
state_updates = {
# Preserve the relevant state indices and lists based on result_type
full_search_results_state: [], # Will be replaced by full_results if result_type is standard
current_result_index_state: 0,
llm_results_state: [], # Will be replaced by full_results if result_type is llm
llm_result_index_state: 0,
best_results_state: [], # Will be replaced by full_results if result_type is favourites
best_index_state: 0,
displayed_context_passages: [], # Reset context state before loading
direct_embedding_output_holder: query_embedding_value # Pass embedding
}
if result_type == "standard":
state_updates[full_search_results_state] = full_results
state_updates[current_result_index_state] = current_index
state_updates[active_view_state] = "context_from_standard"
elif result_type == "llm":
state_updates[llm_results_state] = full_results # Note: full_results holds LLM results here
state_updates[llm_result_index_state] = current_index
state_updates[active_view_state] = "context_from_llm"
elif result_type == "favourites":
state_updates[best_results_state] = full_results # Note: full_results holds favourite results here
state_updates[best_index_state] = current_index
state_updates[active_view_state] = "context_from_favourites" # New state for favourites context
# For favourites, the query embedding is not directly relevant for highlighting the original text,
# as the favourite was selected based on its score. However, we keep the state updated in case needed later.
# Maybe set to None or a specific marker if we don't want query highlighting? Let's keep it for now.
# state_updates[direct_embedding_output_holder] = None
# Log the received embedding for debugging highlighting
logging.debug(f"move_to_reading_area_ui: Received query_embedding_value type: {type(query_embedding_value)}, len/shape: {len(query_embedding_value) if isinstance(query_embedding_value, (list, np.ndarray)) else 'N/A'}, result_type: {result_type}")
# Validate input
if not full_results or not isinstance(full_results, list) or not (0 <= current_index < len(full_results)):
logging.error(f"Invalid {result_type} result reference for moving to reading area.")
updates[context_display] = gr.update(value="Fehler: Ungültige Resultat-Referenz zum Lesen.")
updates[load_previous_button] = gr.update(interactive=False)
updates[load_next_button] = gr.update(interactive=False)
return {**updates, **state_updates}
try:
# Get data for the selected result
target_result_data = full_results[current_index]
passage_meta = target_result_data.get('metadata', {})
selected_passage_id = target_result_data.get('id') # Use 'id' for favourites too
# Extract metadata needed to fetch the paragraph
author = passage_meta.get('author')
book = passage_meta.get('book')
paragraph_idx = passage_meta.get('paragraph_index') # Should be integer or None
# Check if necessary metadata is present
if author is None or book is None or paragraph_idx is None or not isinstance(paragraph_idx, int) or paragraph_idx < 0:
logging.error(f"Missing necessary metadata (author/book/paragraph_index) for {result_type} result ID {selected_passage_id}: Meta={passage_meta}")
updates[context_display] = gr.update(value="Fehler: Metadaten unvollständig. Paragraph kann nicht geladen werden.")
updates[load_previous_button] = gr.update(interactive=False)
updates[load_next_button] = gr.update(interactive=False)
return {**updates, **state_updates}
logging.info(f"Fetching initial paragraph for context: Author='{author}', Book='{book}', ParagraphIndex={paragraph_idx}")
# Fetch the full paragraph data (including embeddings)
initial_paragraph_sentences = fetch_paragraph_data(author, book, paragraph_idx)
if not initial_paragraph_sentences:
logging.error(f"Could not fetch paragraph sentences for {author}/{book}/P{paragraph_idx}")
updates[context_display] = gr.update(value="Fehler: Der zugehörige Paragraph konnte nicht geladen werden (möglicherweise leer?). Die Navigation zum nächsten/vorherigen Paragraphen ist weiterhin aktiv.")
# Buttons remain interactive=True
# Still need to update the state, even if empty sentences were returned,
# to correctly reflect that the context area is active.
state_updates[displayed_context_passages] = []
return {**updates, **state_updates}
# Format the fetched paragraph using the VALID query embedding received as input
logging.info(f"Formatting paragraph {paragraph_idx} with {len(initial_paragraph_sentences)} sentences for display.")
formatted_passage_md = format_context_markdown(initial_paragraph_sentences, query_embedding_value) # Use the passed embedding
updates[context_display] = gr.update(value=formatted_passage_md) # Update display
# Update state with the fetched sentences
state_updates[displayed_context_passages] = initial_paragraph_sentences
# Buttons are already interactive=True from the initial update dict
logging.info(f"Paragraph {paragraph_idx} (for passage ID {selected_passage_id}) displayed in context area.")
except Exception as e:
logging.error(f"Error moving {result_type} passage to reading area: {e}", exc_info=True)
updates[context_display] = gr.update(value=f"**Fehler:** Der Paragraph konnte nicht angezeigt werden. Details siehe Server-Logs.")
updates[load_previous_button] = gr.update(interactive=False)
updates[load_next_button] = gr.update(interactive=False)
return {**updates, **state_updates}
# --- Go Back To Results Function ---
# ... (go_back_to_results_wrapper remains the same in logic, but updates new UI components) ...
def go_back_to_results_wrapper(last_active_view, std_results, std_index, llm_results, llm_index, best_results, best_index, current_fav_signal_value):
"""Handles UI updates for returning from the context view to the appropriate results view."""
logging.info(f"Triggered: go_back_to_results_wrapper from view: {last_active_view}")
updates_dict = {
# Reset context area visibility
context_area: gr.update(visible=False),
context_display: gr.update(value=""), # Clear context display
displayed_context_passages: gr.State([]), # Reset context state
# Pass through existing results and indices states
full_search_results_state: std_results, current_result_index_state: std_index,
llm_results_state: llm_results, llm_result_index_state: llm_index,
best_results_state: best_results, best_index_state: best_index,
direct_embedding_output_holder: None, # Clear embedding when leaving context
fav_signal: gr.update(value=current_fav_signal_value), # <--- Pass through fav_signal state
active_view_state: "none", # Reset active view temporarily before setting correct one
# MODIFIED: Ensure the new result components are cleared before potentially showing results
result_accordion: gr.update(label="...", open=False, visible=False),
result_metadata_display: gr.update(value=""),
result_text: gr.update(value="", visible=False),
}
# Hide status message
updates_dict[status_message] = gr.update(value="", visible=False)
# Determine which result view to show based on where we came from
target_view = "none"
target_results_list = []
target_index = 0
result_type = "unknown" # Used for formatting
if last_active_view == "context_from_standard":
updates_dict[standard_nav_row] = gr.update(visible=True)
updates_dict[single_result_group] = gr.update(visible=True)
target_view = "standard"
target_results_list = std_results
target_index = std_index
result_type = "standard"
logging.info("Going back to Standard results.")
elif last_active_view == "context_from_llm":
updates_dict[standard_nav_row] = gr.update(visible=True) # Assuming LLM uses standard nav row layout
updates_dict[single_result_group] = gr.update(visible=True) # Assuming LLM uses standard group layout
target_view = "llm"
target_results_list = llm_results
target_index = llm_index
result_type = "llm"
logging.info("Going back to LLM results.")
elif last_active_view == "context_from_favourites":
# Assuming favourites use the same display/nav components but potentially managed differently
updates_dict[standard_nav_row] = gr.update(visible=True)
updates_dict[single_result_group] = gr.update(visible=True)
target_view = "favourites"
target_results_list = best_results
target_index = best_index
result_type = "favourites"
logging.info("Going back to Favourites.")
else:
logging.warning(f"Back button triggered from unexpected state: {last_active_view}")
# Default to showing standard search if view is unknown or error state
updates_dict[standard_nav_row] = gr.update(visible=True)
updates_dict[single_result_group] = gr.update(visible=True)
# MODIFIED: Set initial state for new components
updates_dict[result_accordion] = gr.update(label="Kontextansicht verlassen.", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value="")
updates_dict[result_text] = gr.update(value="", visible=True)
target_view = "standard" # Fallback view
# Ensure buttons are hidden if no data is available
updates_dict[previous_result_button] = gr.update(visible=False, interactive=False)
updates_dict[next_result_button] = gr.update(visible=False, interactive=False)
updates_dict[weiterlesen_button] = gr.update(visible=False, interactive=False)
# Return here if we hit an unknown state
updates_dict[active_view_state] = target_view # Set fallback view state
return updates_dict
# Update the active_view state to the results view we returned to
updates_dict[active_view_state] = target_view
# Now manually update the result display and navigation buttons for the target view
if target_results_list and isinstance(target_results_list, list) and 0 <= target_index < len(target_results_list):
result_data = target_results_list[target_index]
# MODIFIED: Use the combined formatter and update new components
accordion_title, accordion_content_md, text_content = format_result_display(result_data, target_index, len(target_results_list), result_type)
updates_dict[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates_dict[result_metadata_display] = gr.update(value=accordion_content_md)
updates_dict[result_text] = gr.update(value=text_content, visible=True)
# Update button interactivity based on the selected index and total results
updates_dict[previous_result_button] = gr.update(visible=True, interactive=(target_index > 0))
updates_dict[next_result_button] = gr.update(visible=True, interactive=(target_index < len(target_results_list) - 1))
updates_dict[weiterlesen_button] = gr.update(visible=True, interactive=True, value="weiterlesen" if result_type != "llm" else "im Original weiterlesen")
else:
# If the result list is empty or invalid, show appropriate message
error_msg_label = f"_{target_view.capitalize()}-Resultate nicht verfügbar._"
error_msg_content = "" # No content for metadata
updates_dict[result_accordion] = gr.update(visible=True, label=error_msg_label, open=False)
updates_dict[result_metadata_display] = gr.update(value=error_msg_content)
updates_dict[result_text] = gr.update(value="", visible=True) # Clear text area
# Hide navigation buttons as there are no results to navigate
updates_dict[previous_result_button] = gr.update(visible=False, interactive=False)
updates_dict[next_result_button] = gr.update(visible=False, interactive=False)
updates_dict[weiterlesen_button] = gr.update(visible=False, interactive=False)
return updates_dict
# --- Load More Context Function ---
def load_more_context(direction, current_passages_state, query_embedding_value):
"""Loads the previous or next paragraph in the reading view."""
logging.info(f"--- Loading More Context: Direction={direction} ---")
# Log embedding details for debugging highlighting
logging.debug(f"load_more_context: Received query_embedding_value type: {type(query_embedding_value)}, len/shape: {len(query_embedding_value) if isinstance(query_embedding_value, (list, np.ndarray)) else 'N/A'}")
# --- Initial Checks ---
if collection is None:
logging.error("Cannot load more context: DB collection not available.")
err_msg = format_context_markdown(current_passages_state or [], query_embedding_value) + "\n\n**Fehler: Datenbank nicht verfügbar.**"
return err_msg, current_passages_state # Return existing state
if not current_passages_state or not isinstance(current_passages_state, list):
logging.warning("load_more_context called with empty or invalid current passage state.")
return "_Keine Passage geladen, kann nicht mehr Kontext laden._", []
# Define marker IDs used to indicate boundaries
START_MARKER_ID = '-1' # Represents reaching the beginning
END_MARKER_ID = 'END_MARKER_ID' # Represents reaching the end
try:
# --- Determine Boundary and Target Paragraph ---
# Ensure current state is sorted (should be, but safe)
current_passages_state.sort(key=lambda x: (x.get('paragraph_index', -1), x.get('sentence_sort_key', float('inf'))))
boundary_passage = None
target_paragraph_index = -1 # Target index to fetch
add_at_beginning = False # Flag to prepend or append new paragraph
if direction == 'previous':
add_at_beginning = True
# Find the first non-missing passage to use as the boundary reference
first_content_passage = next((p for p in current_passages_state if p.get('role') != 'missing'), None)
if not first_content_passage:
logging.warning("Context state contains only markers or is empty. Cannot load previous paragraph.")
# Format existing (only markers) and return current state
return format_context_markdown(current_passages_state, query_embedding_value), current_passages_state
boundary_passage = first_content_passage
# Check if we are already at the start boundary (by looking at the ID of the very first item)
if current_passages_state[0].get('id') == START_MARKER_ID:
logging.info("Already at the start boundary marker. No previous paragraph to load.")
# Reformat existing content (no change expected) and return current state
return format_context_markdown(current_passages_state, query_embedding_value), current_passages_state
current_para_idx = boundary_passage.get('paragraph_index')
# Calculate target index, handle None or 0 index
if current_para_idx is None or not isinstance(current_para_idx, int) or current_para_idx <= 0:
target_paragraph_index = -2 # Indicates we've hit the conceptual start (index < 0)
else:
target_paragraph_index = current_para_idx - 1
elif direction == 'next':
add_at_beginning = False
# Find the last non-missing passage to use as the boundary reference
last_content_passage = next((p for p in reversed(current_passages_state) if p.get('role') != 'missing'), None)
if not last_content_passage:
logging.warning("Context state contains only markers or is empty. Cannot load next paragraph.")
return format_context_markdown(current_passages_state, query_embedding_value), current_passages_state
boundary_passage = last_content_passage
# Check if we are already at the end boundary (by looking at the ID of the very last item)
if current_passages_state[-1].get('id') == END_MARKER_ID:
logging.info("Already at the end boundary marker. No next paragraph to load.")
return format_context_markdown(current_passages_state, query_embedding_value), current_passages_state
current_para_idx = boundary_passage.get('paragraph_index')
# Check for missing index on the boundary passage
if current_para_idx is None or not isinstance(current_para_idx, int):
logging.error("Cannot load next paragraph: current boundary passage is missing a valid paragraph index.")
err_msg = format_context_markdown(current_passages_state, query_embedding_value) + "\n\n**Fehler: Interner Zustand inkonsistent (fehlender Paragraph-Index).**"
return err_msg, current_passages_state
target_paragraph_index = current_para_idx + 1
else:
logging.error(f"Invalid direction '{direction}' provided to load_more_context.")
return format_context_markdown(current_passages_state, query_embedding_value), current_passages_state # Return unchanged
# --- Fetch New Paragraph Data ---
new_paragraph_sentences = []
boundary_hit = False # Flag if we reached start/end of book/section
new_passage_added = False # Flag if actual content was added/changed
# Extract author/book from the boundary passage's metadata
boundary_meta = boundary_passage.get('meta', {}) if boundary_passage else {}
author = boundary_meta.get('author')
book = boundary_meta.get('book')
# Fetch if target index is valid and we have author/book context
if target_paragraph_index >= 0 and author and book:
logging.info(f"Attempting to load paragraph {target_paragraph_index} for {author}/{book}")
new_paragraph_sentences = fetch_paragraph_data(author, book, target_paragraph_index)
if not new_paragraph_sentences:
# Successfully queried but found no sentences -> boundary hit
boundary_hit = True
logging.info(f"Boundary hit: No sentences found for paragraph {target_paragraph_index}.")
else:
# Successfully fetched new sentences
new_passage_added = True
logging.info(f"Successfully fetched {len(new_paragraph_sentences)} sentences for paragraph {target_paragraph_index}.")
elif target_paragraph_index == -2:
# Explicitly hit the start boundary based on index calculation
boundary_hit = True
logging.info("Boundary hit: Reached beginning (index <= 0).")
else:
# Invalid state (e.g., missing author/book on boundary passage)
logging.error(f"Cannot load more context: Invalid target index ({target_paragraph_index}) or missing author/book from boundary passage {boundary_passage.get('id') if boundary_passage else 'N/A'}.")
boundary_hit = True # Treat as boundary hit to potentially add marker
# --- Update Passages State ---
updated_passages = list(current_passages_state) # Create a mutable copy
# Remove existing boundary markers before adding new content/markers
updated_passages = [p for p in updated_passages if p.get('role') != 'missing']
if new_passage_added:
# Add the newly fetched sentences
if add_at_beginning:
updated_passages = new_paragraph_sentences + updated_passages # Prepend
else:
updated_passages.extend(new_paragraph_sentences) # Append
# Only add boundary marker if new content wasn't added AND we hit a boundary
# (or if it was a boundary hit but fetch_paragraph_data returned empty).
# This prevents adding a boundary marker if the next paragraph exists but is empty,
# unless we are at the absolute start/end (target_paragraph_index == -2 or the fetch returns empty).
# Also ensure we don't add duplicate markers.
if boundary_hit:
if add_at_beginning: # Hit previous boundary
if not updated_passages or updated_passages[0].get('id') != START_MARKER_ID:
updated_passages.insert(0, {'id': START_MARKER_ID, 'paragraph_index': -1, 'role': 'missing', 'doc': '_(Anfang des Buches/Abschnitts)_', 'meta': {}, 'sentence_sort_key': float('-inf'), 'embedding': None})
# new_passage_added = True # Marker addition counts as change
else: # Hit next boundary
if not updated_passages or updated_passages[-1].get('id') != END_MARKER_ID:
updated_passages.append({'id': END_MARKER_ID, 'paragraph_index': float('inf'), 'role': 'missing', 'doc': '_(Ende des Buches/Abschnitts)_', 'meta': {}, 'sentence_sort_key': float('inf'), 'embedding': None})
# new_passage_added = True # Marker addition counts as change
# --- Reformat and Return ---
# Reformat only if the content of `updated_passages` actually changed (new passage or marker added)
# or if the original state had markers removed.
# Compare length or check if new_passage_added or boundary_hit.
content_changed = new_passage_added or (boundary_hit and len(updated_passages) != len(current_passages_state)) # Simple check for now
if content_changed or not updated_passages: # Also reformat if state became empty
# Ensure final list is sorted correctly including any added markers/paragraphs
updated_passages.sort(key=lambda x: (x.get('paragraph_index', -1), x.get('sentence_sort_key', float('inf'))))
logging.info(f"Reformatting context with {len(updated_passages)} total passages after loading more.")
# Use the VALID query embedding passed into the function for consistent highlighting
context_md = format_context_markdown(updated_passages, query_embedding_value)
# Return the new Markdown and the updated state list
return context_md, updated_passages
else:
# No new passage or boundary marker state change.
# Reformat existing content just in case metadata/sorting needed fixing, return original state list
logging.debug(f"Load Context: No change in passages or boundary marker state for direction '{direction}'. Reformatting existing state.")
# Re-sort the original state list just in case, then format it.
current_passages_state.sort(key=lambda x: (x.get('paragraph_index', -1), x.get('sentence_sort_key', float('inf'))))
original_context_md = format_context_markdown(current_passages_state, query_embedding_value)
# Return the reformatted original markdown and the original state list
return original_context_md, current_passages_state
except Exception as e:
logging.error(f"Error loading more context (paragraph mode): {e}", exc_info=True)
# Format existing content + error message, return original state
error_message = format_context_markdown(current_passages_state or [], query_embedding_value) + f"\n\n**Fehler beim Laden des nächsten/vorherigen Paragraphen.**"
return error_message, current_passages_state
# --- Load More Context Function ---
def load_more_context_wrapper(direction, current_passages_state, query_embedding_value):
"""Loads the previous or next paragraph in the reading view."""
logging.info(f"Triggered: load_more_context_wrapper direction={direction}")
# This function's outputs are only context_display and displayed_context_passages state.
# It does NOT affect the overall UI layout or result list navigation buttons.
output_components = [context_display, displayed_context_passages]
try:
context_md, updated_passages_state = load_more_context(direction, current_passages_state, query_embedding_value)
# load_more_context returns a tuple (markdown_str, updated_state_list)
# Map these directly to the output components
updates_list = [
gr.update(value=context_md), # update context_display
updated_passages_state # update displayed_context_passages state
]
logging.debug(f"load_more_context_wrapper: Returning {len(updates_list)} updates.")
return updates_list
except Exception as e:
logging.error(f"Error in load_more_context wrapper: {e}", exc_info=True)
# On error, return error message and original state
error_md = format_context_markdown(current_passages_state or [], query_embedding_value) + f"\n\n**Fehler beim Laden des nächsten/vorherigen Paragraphen.**"
updates_list = [
gr.update(value=error_md),
current_passages_state # Return original state on error
]
return updates_list
# --- Modified _on_fav function ---
# This function is triggered by the hidden button click via api_name
# It expects the passage_id as its argument, provided by the JS Client API predict call.
def _on_fav(passage_id): # Removed type hint str for debugging
"""Handles favourite signal from JS, only increments and updates status."""
# Log the type and value of the received argument
logging.info(f"Triggered: _on_fav with received argument: {passage_id!r} (Type: {type(passage_id)})")
updates_dict = {
fav_signal: gr.update(value=""), # Always clear the signal textbox after processing
status_message: gr.update(visible=False, value="") # Clear status initially
}
# Check if passage_id is a non-empty string
if not isinstance(passage_id, str) or not passage_id.strip():
logging.warning(f"_on_fav called with invalid passage_id: {passage_id!r}.")
updates_dict[status_message] = gr.update(visible=True, value="**Fehler:** Ungültige Favoriten-ID erhalten.")
return updates_dict # Return the updates dictionary
try:
# Call the core logic to increment the favourite score
new_score = inc_favourite(passage_id) # Use the valid passage_id string
logging.info(f"Successfully incremented favourite for ID {passage_id}. New score: {new_score}")
# Update the status message to inform the user
updates_dict[status_message] = gr.update(visible=True, value=f"⭐ Favorit gespeichert! (Score: {new_score})")
except Exception as e:
logging.error(f"Error in _on_fav processing ID {passage_id}: {e}", exc_info=True)
# Update status message with error info
updates_dict[status_message] = gr.update(visible=True, value=f"**Fehler beim Speichern des Favoriten:** {e}")
# This function returns a dictionary of updates for its bound outputs.
# These are just the fav_signal state (to reset it) and the status_message UI element.
return updates_dict
js_code = """
// ------------------------------------------------------------
// FAVOURITE HANDLER (uses Gradio JS Client predict endpoint)
// ------------------------------------------------------------
let gradioApp = null; // will hold the connected client
const ENDPOINT = "/fav"; // same name you set in api_name
const STATUS_SEL = '#status-message'; // Selector for the markdown status element
// const FAV_SIGNAL_ID = 'fav-signal'; // No longer directly interacting with fav-signal textbox from JS click handler
// const DEBUG_ID_SEL = '#clicked-id-debug input'; // Original selector
// const DEBUG_ELEM_ID = 'clicked-id-debug'; // The elem_id for the debug textbox container <--- REMOVE THIS
// 1 ‒ connect once, then re‑use
async function initializeFavClient() {
console.log("JS: Initializing fav client…");
try {
// Assuming Client is made global by the <script type="module"> tag in head
if (typeof Client === "undefined") {
console.error("JS: window.Client not defined (script order?)");
return;
}
gradioApp = await Client.connect(window.location.origin);
console.log("JS: Gradio Client connected.");
} catch (e) {
console.error("JS: Could not connect:", e);
}
}
setTimeout(initializeFavClient, 100); // Initialize client after a short delay
// Basic HTML escape function for safety in JS error display
function htmlEscape(str) {
return str.replace(/&/g, '&')
.replace(/</g, '<')
.replace(/>/g, '>')
.replace(/"/g, '"')
.replace(/'/g, ''');
}
// 2 ‒ call backend when user clicks a sentence
async function gradio_fav(id) {
const statusEl = document.querySelector(STATUS_SEL);
if (statusEl) {
statusEl.style.display = ''; // Make visible
statusEl.innerHTML = "Speichere Favorit…"; // Set loading message using innerHTML
}
console.log(`JS: Calling backend ${ENDPOINT} with ID: ${id}`); // Log before calling predict
if (!gradioApp) {
console.warn("JS: client not ready yet for /fav call.");
if (statusEl) statusEl.innerHTML = "**Fehler:** Gradio Client nicht verbunden.";
return;
}
try {
// Pass the ID as a string in an array - matches backend inputs=[fav_signal]
const res = await gradioApp.predict(ENDPOINT, [String(id)]);
console.log(`JS: ${ENDPOINT} predict call response:`, res); // Log the full response
// Expected response structure from _on_fav is [updated_fav_signal_value, updated_status_message_value]
// We only care about the status message update
const msg = res?.data?.[1]?.value ?? "⭐ Favorit gespeichert!"; // Get the updated value for status_message (index 1)
const is_status_visible = res?.data?.[1]?.visible ?? true; // Check if status should be visible
if (statusEl) {
statusEl.innerHTML = msg;
statusEl.style.display = is_status_visible ? '' : 'none'; // Set visibility
}
} catch (e) {
console.error(`JS: backend ${ENDPOINT} error:`, e);
// Attempt to get a more specific error message if available
let errorMsg = "Unbekannter Fehler";
if (e && typeof e === 'object' && e.message) {
errorMsg = e.message;
} else if (typeof e === 'string') {
errorMsg = e;
} else if (e && typeof e === 'object' && e.name) {
errorMsg = `${e.name}: ${errorMsg}`;
} else if (e && typeof e === 'object' && e.stack) {
errorMsg = `${errorMsg} (See console for stack trace)`;
}
if (statusEl) {
statusEl.style.display = ''; // Make visible
statusEl.innerHTML = `**Fehler:** ${htmlEscape(errorMsg)}`; // Escape error message for safety
}
}
}
// 3 ‒ delegate clicks on any span.clickable‑sentence
document.addEventListener("click", ev => {
const span = ev.target.closest("span.clickable-sentence[data-id]");
if (!span) return; // Not a clickable sentence
const passageId = span.dataset.id; // Get the ID from the data attribute
console.log(`JS: Clicked sentence. Found data-id: ${passageId}`); // Log the found ID
// --- DEBUG: Update debug textbox ---
// REMOVE ALL THE DEBUG TEXTBOX JS CODE FROM HERE
// const debugElement = document.getElementById(DEBUG_ELEM_ID); // Get element by elem_id
// let clickedIdDebugInput = null;
// ... rest of debug js code ...
// --- END DEBUG ---
if (passageId && String(passageId).trim() !== '' && String(passageId) !== 'undefined' && String(passageId) !== 'null') {
gradio_fav(passageId); // Call the function with the ID (as string)
} else {
console.warn("JS: Clickable span found, but missing or empty data-id attribute.");
}
});
"""
# --- Gradio UI Definition ---
# Pass the JavaScript code and Custom CSS to the 'head' and 'css' parameters of gr.Blocks
custom_css = """
/* Style for clickable sentences */
span.clickable-sentence {
cursor: pointer; /* Ensure pointer cursor */
}
/* Style for highlighted sentences (base style) */
/* Uses a CSS variable for dynamic alpha */
span.clickable-sentence.highlighted { /* Target the single span when it has both classes */
/* Base highlight color using the dynamic alpha variable */
background-color: hsla(var(--highlight-hue, 60), var(--highlight-saturation, 100%), var(--highlight-lightness, 90%), var(--highlight-alpha));
/* Fixed styles for highlighting shape */
padding: 1px 3px;
border-radius: 3px;
/* Prevents highlight from breaking awkwardly across lines */
box-decoration-break: clone;
-webkit-box-decoration-break: clone; /* For older WebKit browsers */
}
/* Style for sentences on hover (applies to ALL clickable spans, highlighted or not) */
/* This rule has higher specificity than span.clickable-sentence.highlighted */
span.clickable-sentence:hover {
/* Hover background color - this will override the base highlight color */
background-color: hsla(60, 100%, 70%, 0.8); /* Yellow-ish, more opaque */
transition: background-color 0.2s ease; /* Smooth transition */
}
/* Style for the status message to make it stand out */
#status-message {
margin-top: 10px; /* Space above the message */
padding: 8px; /* Padding inside the message box */
border-radius: 5px; /* Rounded corners */
background-color: #fff3cd; /* Light yellow background (for info/success) */
color: #664d03; /* Dark yellow text */
border: 1px solid #ffecb5; /* Yellow border */
visibility: visible; /* Make it visible initially */
opacity: 1; /* Fully opaque */
transition: opacity 0.5s ease-in-out; /* Fade effect */
}
/* Style for error status message */
#status-message strong {
color: #842029; /* Dark red for errors */
}
/* You could add data-error="true" using JS/Gradio update for specific error styling */
/* #status-message[data-error="true"] {
background-color: #f8d7da;
color: #721c24;
border-color: #f5c6cb;
} */
"""
with gr.Blocks(theme = gr.themes.Default(
primary_hue="yellow",
secondary_hue="blue",
text_size="lg",
spacing_size="md",
radius_size="md",
),
head=f"""
<script type="module">
import {{ Client as GradioClient }} from
"https://cdn.jsdelivr.net/npm/@gradio/client/dist/index.min.js";
window.Client = GradioClient; // expose for the page
</script>
<script>
{js_code}
</script>
""",
css=custom_css # Add the custom CSS here
) as demo:
gr.Markdown("# Thought Loop")
gr.Markdown("Semantische Suche")
# --- State Variables ---
full_search_results_state = gr.State([]) # Stores results from Standard search
current_result_index_state = gr.State(0) # Index for Standard search results
llm_results_state = gr.State([]) # Stores results from LLM search
llm_result_index_state = gr.State(0) # Index for LLM search results
best_results_state = gr.State([]) # Stores results from Favourites view
best_index_state = gr.State(0) # Index for Favourites results
displayed_context_passages = gr.State([]) # Stores passages currently in context view
# active_view_state tracks which view is active:
# "standard", "llm", "favourites", "context_from_standard", "context_from_llm", "context_from_favourites", "none"
active_view_state = gr.State("none")
# Holds the query embedding for highlighting in the context view.
# Needs to be passed through UI events that transition *to* the context view.
direct_embedding_output_holder = gr.State(None)
# --- UI Layout ---
with gr.Row():
query_input = gr.Textbox(label="Gedanken eingeben", placeholder="Sollte Technologie nicht zu immer krasserer Arbeitsteilung führen, sodass wir in Zukunft...", lines=2, scale=4)
author_dropdown = gr.Dropdown(label="Autoren auswählen (optional)", choices=unique_authors, multiselect=True, scale=2)
with gr.Accordion("Feinabstimmung Rankierung", open=False) as result_tuning_accordion:
with gr.Row():
window_size_slider = gr.Slider(
minimum=0, maximum=5, step=1, value=RERANK_WINDOW_SIZE,
label="Kontext-Fenstergröße (+/- Sätze)",
info="Wie viele Sätze vor/nach dem Treffer-Satz für Kontext-Score & Anzeige berücksichtigt werden (0-5)."
)
weight_slider = gr.Slider(
minimum=0.0, maximum=1.0, step=0.05, value=RERANK_WEIGHT,
label="Kontext-Gewichtung",
info="Wie stark der Kontext-Score das ursprüngliche Ranking beeinflusst (0.0 = kein Einfluss, 1.0 = stark)."
)
decay_slider = gr.Slider(
minimum=0.0, maximum=1.0, step=0.05, value=RERANK_DECAY,
label="Kontext-Abfallfaktor",
info="Wie schnell der Einfluss von Nachbarn mit der Distanz abnimmt (0.0 = kein Abfall, 1.0 = stark)."
)
with gr.Row():
search_button = gr.Button("Embeddingsuche", variant="secondary", scale=1)
llm_rerank_button = gr.Button("Embeddingsuche + LLM Auswahl", variant="secondary", scale=1, interactive=(API_KEY is not None and llm_rerank_model is not None))
best_of_button = gr.Button("⭐⭐⭐", variant="secondary", scale=1)
# --- Shared Results/Favourites Area ---
# We reuse standard_nav_row and single_result_group for all result types
with gr.Row(visible=False) as standard_nav_row:
# These buttons will be shown/hidden based on active_view_state
previous_result_button = gr.Button("⬅️", min_width=80, visible=False) # General Previous
next_result_button = gr.Button("➡️", min_width=80, visible=False) # General Next
weiterlesen_button = gr.Button("weiterlesen", variant="secondary", visible=False) # General Weiterlesen
with gr.Group(visible=False) as single_result_group:
# MODIFIED: Replaced single_result_display_md with an Accordion and a Textbox
result_accordion = gr.Accordion(label="Feinabstimmung", open=False) # Accordion for heading and metadata
with result_accordion:
# The content of the accordion will be a Markdown component
result_metadata_display = gr.Markdown("...") # Placeholder for metadata and scores
# This Textbox will contain the actual passage text
result_text = gr.Textbox(label="", lines=5, interactive=False, visible=True)
# --- Status Message Area ---
# Added elem_id for JS to target
status_message = gr.Markdown("", visible=False, elem_id="status-message") # Changed to visible=False initially
# --- Hidden Signaling Components ---
# Hidden textbox to hold the ID (will be used as input in client API call)
# JS click handler now uses the client API directly, no longer sets this textbox value
# This component's *value* is still used as an output by _on_fav to reset it.
fav_signal = gr.Textbox(
visible=False,
elem_id="fav-signal", # Still useful for potential future JS interactions or debugging
value="" # Initialize with empty value
)
# Hidden button triggered by JS (used to expose the backend function via its api_name binding)
# The Client API calls the function bound to the api_name, not the button's click *event*.
# This button component is mainly here to provide a place for the api_name binding.
fav_trigger_button = gr.Button(
visible=False,
elem_id="fav-trigger-button" # Still useful for JS to get a reference if needed, though not clicked directly anymore
)
# --- Reading Area ---
with gr.Column(visible=False) as context_area:
back_to_results_button = gr.Button("⬅️ Zurück ", variant="secondary", visible=False)
load_previous_button = gr.Button("⬆️", variant="secondary", visible=False) # Added text
# --- MODIFIED: Added elem_id to context_display ---
context_display = gr.HTML(label="Lesebereich", value="<div>_Kontext wird hier angezeigt._</div>", elem_id="context-display-markdown") # gr.HTML needs valid HTML, so wrap placeholder in div
load_next_button = gr.Button("⬇️", variant="secondary", visible=False) # Added text
# --- Utility function to create a reset update dictionary ---
# This function needs to be defined AFTER all the components it references
def create_reset_updates():
"""Creates a dictionary of Gradio updates to reset the UI and state."""
updates = {}
# List all components that need resetting/hiding, *excluding* the sliders and the Accordion content display
components_to_reset = [
# States
full_search_results_state, current_result_index_state, displayed_context_passages,
llm_results_state, llm_result_index_state, active_view_state,
direct_embedding_output_holder,
best_results_state, best_index_state,
fav_signal, # <-- Included here as a state to reset its value
# Shared Result UI - Containers
standard_nav_row, single_result_group,
# Shared Result UI - New Components
result_accordion, result_metadata_display, result_text,
# Tuning Accordion
result_tuning_accordion,
# Buttons in shared row
previous_result_button, next_result_button, weiterlesen_button,
# Context Area UI
context_area, context_display, load_previous_button, load_next_button,
back_to_results_button,
# Status message
status_message,
# fav_trigger_button is intentionally excluded here as its visibility/interactivity isn't controlled by this reset.
]
for comp in components_to_reset:
if isinstance(comp, gr.State):
if comp in [current_result_index_state, llm_result_index_state, best_index_state]: updates[comp] = 0
elif comp == active_view_state: updates[comp] = "none"
elif comp == direct_embedding_output_holder: updates[comp] = None
# Note: fav_signal state value is reset below explicitly
elif comp in [full_search_results_state, displayed_context_passages, llm_results_state, best_results_state]: updates[comp] = []
else: # UI Components
if isinstance(comp, gr.Markdown):
updates[comp] = gr.update(value="") # Clear Markdown content
elif isinstance(comp, gr.HTML):
updates[comp] = gr.update(value="<div>_Kontext wird hier angezeigt._</div>") # Reset HTML content
elif isinstance(comp, gr.Textbox): # Handle Textboxes
# result_text needs value reset, visibility handled by single_result_group
if comp == result_text:
updates[comp] = gr.update(value="", interactive=False) # Keep interactive=False for results view
# fav_signal needs value reset AND explicit visibility set to False
elif comp == fav_signal:
updates[comp] = gr.update(value="", visible=False)
# Add any other Textboxes here if needed
elif isinstance(comp, gr.Accordion): # New Accordion
updates[comp] = gr.update(label="Feinabstimmung", open=False, visible=True) # Reset label, close, keep visible. Visibility controlled by single_result_group.
if isinstance(comp, (gr.Row, gr.Group, gr.Column)):
# Keep tuning accordion open/visible (Accordion itself isn't in this list, but its contents are)
if comp not in []: # Add any other components that should NOT be hidden here
updates[comp] = gr.update(visible=False)
if isinstance(comp, gr.Button):
updates[comp] = gr.update(visible=False, interactive=False)
if comp == status_message:
updates[comp] = gr.update(value="", visible=False)
# Explicitly set tuning sliders to be visible and interactive on reset,
# but *don't* reset their values here. Their current values will be retained.
# These sliders are NOT included in the components_to_reset list above,
# so they won't be affected by the generic hide logic.
updates[window_size_slider] = gr.update(visible=True, interactive=True)
updates[weight_slider] = gr.update(visible=True, interactive=True)
updates[decay_slider] = gr.update(visible=True, interactive=True)
# The result_metadata_display (inside the accordion) also needs resetting
updates[result_metadata_display] = gr.update(value="...")
logging.debug(f"Created reset updates dict with {len(updates)} items.")
return updates
# --- Wrapper Functions for Gradio Bindings ---
# These wrappers prepare the inputs and outputs for the Gradio event handlers.
# They return a dictionary of updates which is then converted to a list by Gradio.
def search_standard_wrapper(query, selected_authors, window_size, weight, decay):
logging.info(f"Triggered: search_standard_wrapper with window={window_size}, weight={weight:.2f}, decay={decay:.2f}")
# Start with a reset state (Includes hiding context area and its buttons)
updates_dict = create_reset_updates()
try:
search_results, query_embedding = perform_search_standard(
query, selected_authors,
window_size, weight, decay
)
# Merge updates from the mode-specific UI function (Shows results area)
# search_standard_mode_ui now handles updating the new components
updates_dict.update(search_standard_mode_ui(search_results, query_embedding))
except Exception as e:
logging.error(f"Error in search_standard_wrapper: {e}", exc_info=True)
# MODIFIED: Update the new components on error
updates_dict[result_accordion] = gr.update(label=f"**Fehler bei der Suche:**", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value=str(e)) # Display error message in metadata area
updates_dict[result_text] = gr.update(value="", visible=True)
updates_dict[single_result_group] = gr.update(visible=True) # Ensure the result group is visible
updates_dict[direct_embedding_output_holder] = None
# --- FIX: Ensure context area and its buttons are hidden when showing search results ---
# Although create_reset_updates is called, add explicit updates for robustness
updates_dict[context_area] = gr.update(visible=False)
updates_dict[load_previous_button] = gr.update(visible=False)
updates_dict[load_next_button] = gr.update(visible=False)
updates_dict[back_to_results_button] = gr.update(visible=False)
# --- END FIX ---
# Return the dictionary of updates
return updates_dict
def search_llm_rerank_wrapper(query, selected_authors, window_size, weight, decay):
logging.info(f"Triggered: search_llm_rerank_wrapper with window={window_size}, weight={weight:.2f}, decay={decay:.2f}")
# Start with a reset state (Includes hiding context area and its buttons)
updates_dict = create_reset_updates()
try:
llm_results, query_embedding = perform_search_llm(
query, selected_authors,
window_size, weight, decay
)
# Merge updates from the mode-specific UI function (Shows LLM results area)
# search_llm_rerank_mode_ui now handles updating the new components
updates_dict.update(search_llm_rerank_mode_ui(llm_results, query_embedding))
except Exception as e:
logging.error(f"Error in search_llm_rerank_wrapper: {e}", exc_info=True)
# MODIFIED: Update the new components on error
updates_dict[result_accordion] = gr.update(label=f"**Fehler bei der LLM-Suche:**", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value=str(e)) # Display error message
updates_dict[result_text] = gr.update(value="", visible=True)
updates_dict[single_result_group] = gr.update(visible=True) # Ensure group is visible
updates_dict[direct_embedding_output_holder] = None
# --- FIX: Ensure context area and its buttons are hidden when showing LLM results ---
# Although create_reset_updates is called, add explicit updates for robustness
updates_dict[context_area] = gr.update(visible=False)
updates_dict[load_previous_button] = gr.update(visible=False)
updates_dict[load_next_button] = gr.update(visible=False)
updates_dict[back_to_results_button] = gr.update(visible=False)
# --- END FIX ---
# Return the dictionary of updates
return updates_dict
def refresh_best_wrapper():
"""Wrapper for _refresh_best to prepare UI updates."""
logging.info("Triggered: refresh_best_wrapper")
# Start with a reset state (Includes hiding context area and its buttons)
updates_dict = create_reset_updates()
# Ensure status message is hidden on view change
updates_dict[status_message] = gr.update(value="", visible=False)
try:
favs = top_favourites(MAX_FAVOURITES)
if not favs:
logging.info("No favourites to display.")
# MODIFIED: Update the new components for no results
updates_dict[result_accordion] = gr.update(label="_Noch keine Favoriten gesammelt.", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value="")
updates_dict[result_text] = gr.update(value="", visible=True)
updates_dict[single_result_group] = gr.update(visible=True) # Ensure group is visible
updates_dict[best_results_state] = []
updates_dict[best_index_state] = 0
updates_dict[active_view_state] = "favourites" # Set view even if empty
else:
logging.info(f"Displaying first of {len(favs)} favourite results.")
# format_result_display returns (accordion_title, accordion_content_md, text_content)
accordion_title, accordion_content_md, text_content = format_result_display(favs[0], 0, len(favs), "favourites")
# MODIFIED: Update the new components with formatted data
updates_dict[result_accordion] = gr.update(label=accordion_title, open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value=accordion_content_md)
updates_dict[result_text] = gr.update(value=text_content, visible=True)
updates_dict[single_result_group] = gr.update(visible=True) # Ensure group is visible
updates_dict[standard_nav_row] = gr.update(visible=True)
updates_dict[previous_result_button] = gr.update(visible=True, interactive=False) # First result is not navigable prev
updates_dict[next_result_button] = gr.update(visible=True, interactive=(len(favs) > 1)) # Enable if more than one fav
updates_dict[weiterlesen_button] = gr.update(visible=True, interactive=True, value="weiterlesen") # Enable context button
updates_dict[best_results_state] = favs
updates_dict[best_index_state] = 0
updates_dict[active_view_state] = "favourites" # Set active view state
except Exception as e:
logging.error(f"Error in refresh_best_wrapper: {e}", exc_info=True)
# MODIFIED: Update the new components on error
updates_dict[result_accordion] = gr.update(label=f"**Fehler beim Laden der Favoriten:**", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value=str(e)) # Display error message
updates_dict[result_text] = gr.update(value="", visible=True)
updates_dict[single_result_group] = gr.update(visible=True) # Ensure group is visible
updates_dict[best_results_state] = []
updates_dict[best_index_state] = 0
updates_dict[active_view_state] = "none" # Indicate error state
# --- FIX: Ensure context area and its buttons are hidden when showing Favourites ---
# Although create_reset_updates is called, add explicit updates for robustness
updates_dict[context_area] = gr.update(visible=False)
updates_dict[load_previous_button] = gr.update(visible=False)
updates_dict[load_next_button] = gr.update(visible=False)
updates_dict[back_to_results_button] = gr.update(visible=False)
# --- END FIX ---
# Return the dictionary of updates
return updates_dict
def navigate_results_wrapper(direction, current_index, full_results, llm_results, llm_index, best_results, best_index, active_view):
logging.info(f"Triggered: navigate_results_wrapper direction={direction}, active_view={active_view}")
updates_dict = {
# Default updates to preserve relevant state based on active view
full_search_results_state: full_results,
current_result_index_state: current_index,
llm_results_state: llm_results,
llm_result_index_state: llm_index,
best_results_state: best_results,
best_index_state: best_index,
active_view_state: active_view, # Preserve active view
# MODIFIED: Clear new components when navigating (before displaying the next one)
result_accordion: gr.update(label="...", open=False, visible=True),
result_metadata_display: gr.update(value=""),
result_text: gr.update(value="", visible=True),
}
try:
if active_view == "standard":
# navigate_results now updates the new components directly
nav_updates = navigate_results(direction, current_index, full_results)
updates_dict.update(nav_updates)
elif active_view == "llm":
# navigate_llm_results now updates the new components directly
nav_updates = navigate_llm_results(direction, llm_index, llm_results)
updates_dict.update(nav_updates)
elif active_view == "favourites":
# navigate_best_results now updates the new components directly
nav_updates = navigate_best_results(direction, best_index, best_results)
updates_dict.update(nav_updates)
else:
logging.warning(f"Navigation triggered in unexpected view state: {active_view}")
# MODIFIED: Update new components on error
updates_dict[result_accordion] = gr.update(label="Navigation nicht möglich.", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value="Ungültiger Status.")
updates_dict[result_text] = gr.update(value="", visible=True)
# Hide nav buttons as navigation is not possible
updates_dict[previous_result_button] = gr.update(interactive=False)
updates_dict[next_result_button] = gr.update(interactive=False)
updates_dict[weiterlesen_button] = gr.update(interactive=False)
except Exception as e:
logging.error(f"Error in navigation wrapper: {e}", exc_info=True)
# MODIFIED: Update new components on error
updates_dict[result_accordion] = gr.update(label=f"**Navigationsfehler:**", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value=str(e))
updates_dict[result_text] = gr.update(value="", visible=True)
# On error, disable navigation buttons
updates_dict[previous_result_button] = gr.update(interactive=False)
updates_dict[next_result_button] = gr.update(interactive=False)
updates_dict[weiterlesen_button] = gr.update(interactive=False)
# Return the dictionary of updates
# Note: The individual navigate_* functions within the try/except
# already populate the updates_dict with the specifics.
# We just handle the top-level error/unexpected state here.
return updates_dict
def go_back_to_results_wrapper(last_active_view, std_results, std_index, llm_results, llm_index, best_results, best_index, current_fav_signal_value):
"""Handles UI updates for returning from the context view to the appropriate results view."""
logging.info(f"Triggered: go_back_to_results_wrapper from view: {last_active_view}")
updates_dict = {
# Reset context area visibility
context_area: gr.update(visible=False),
context_display: gr.update(value=""), # Clear context display
displayed_context_passages: gr.State([]), # Reset context state
# Pass through existing results and indices states
full_search_results_state: std_results, current_result_index_state: std_index,
llm_results_state: llm_results, llm_result_index_state: llm_index,
best_results_state: best_results, best_index_state: best_index,
direct_embedding_output_holder: None, # Clear embedding when leaving context
fav_signal: gr.update(value=current_fav_signal_value), # <--- Pass through fav_signal state
active_view_state: "none", # Reset active view temporarily before setting correct one
# Ensure the new result components are initially hidden when returning
result_accordion: gr.update(label="Feinabstimmung", open=False, visible=False),
result_metadata_display: gr.update(value=""),
result_text: gr.update(value="", visible=False),
# Ensure shared result row and group are initially hidden
standard_nav_row: gr.update(visible=False),
single_result_group: gr.update(visible=False),
# Also ensure all result nav buttons are hidden initially
previous_result_button: gr.update(visible=False, interactive=False),
next_result_button: gr.update(visible=False, interactive=False),
weiterlesen_button: gr.update(visible=False, interactive=False),
}
# Hide status message
updates_dict[status_message] = gr.update(value="", visible=False)
# Determine which result view to show based on where we came from
target_view = "none"
target_results_list = []
target_index = 0
result_type = "unknown" # Used for formatting
if last_active_view == "context_from_standard":
target_view = "standard"
target_results_list = std_results
target_index = std_index
result_type = "standard"
logging.info("Going back to Standard results.")
elif last_active_view == "context_from_llm":
target_view = "llm"
target_results_list = llm_results
target_index = llm_index
result_type = "llm"
logging.info("Going back to LLM results.")
elif last_active_view == "context_from_favourites":
target_view = "favourites"
target_results_list = best_results
target_index = best_index
result_type = "favourites"
logging.info("Going back to Favourites.")
else:
logging.warning(f"Back button triggered from unexpected state: {last_active_view}")
# Default to showing an error message if view is unknown
updates_dict[result_accordion] = gr.update(label="Zurück aus unbekanntem Zustand.", open=False, visible=True)
updates_dict[result_metadata_display] = gr.update(value="Resultate konnten nicht geladen werden.")
updates_dict[result_text] = gr.update(value="", visible=True)
updates_dict[single_result_group] = gr.update(visible=True) # Ensure group is visible
updates_dict[standard_nav_row] = gr.update(visible=True) # Ensure nav row is visible (even if buttons are hidden)
target_view = "none" # Stay in error state
return updates_dict # Return early on error
# Update the active_view state to the results view we returned to
updates_dict[active_view_state] = target_view
# Show the shared result group and nav row
updates_dict[single_result_group] = gr.update(visible=True)
updates_dict[standard_nav_row] = gr.update(visible=True)
# Update the result display and navigation buttons for the target view
if target_results_list and isinstance(target_results_list, list) and 0 <= target_index < len(target_results_list):
result_data = target_results_list[target_index]
# MODIFIED: Use the combined formatter and update new components
accordion_title, accordion_content_md, text_content = format_result_display(result_data, target_index, len(target_results_list), result_type)
updates_dict[result_accordion] = gr.update(visible=True, label=accordion_title, open=False)
updates_dict[result_metadata_display] = gr.update(value=accordion_content_md)
updates_dict[result_text] = gr.update(value=text_content, visible=True)
# Update button interactivity based on the selected index and total results
updates_dict[previous_result_button] = gr.update(visible=True, interactive=(target_index > 0))
updates_dict[next_result_button] = gr.update(visible=True, interactive=(target_index < len(target_results_list) - 1))
updates_dict[weiterlesen_button] = gr.update(visible=True, interactive=True, value="weiterlesen" if result_type != "llm" else "im Original weiterlesen")
else:
# If the result list is empty or invalid after returning, show appropriate message
error_msg_label = f"_{target_view.capitalize()}-Resultate nicht verfügbar._"
error_msg_content = "" # No content for metadata
updates_dict[result_accordion] = gr.update(visible=True, label=error_msg_label, open=False)
updates_dict[result_metadata_display] = gr.update(value=error_msg_content)
updates_dict[result_text] = gr.update(value="", visible=True) # Clear text area
# Hide navigation buttons as there are no results to navigate
updates_dict[previous_result_button] = gr.update(visible=False, interactive=False)
updates_dict[next_result_button] = gr.update(visible=False, interactive=False)
updates_dict[weiterlesen_button] = gr.update(visible=False, interactive=False)
return updates_dict
def move_to_reading_wrapper(std_results, std_index, llm_results, llm_index, best_results, best_index, active_view, query_embedding_value, current_fav_signal_value):
logging.info(f"Triggered: move_to_reading_wrapper active_view={active_view}")
updates_dict = {
# Preserve all state variables by default
full_search_results_state: std_results, current_result_index_state: std_index,
llm_results_state: llm_results, llm_result_index_state: llm_index,
best_results_state: best_results, best_index_state: best_index,
active_view_state: active_view, # Preserve active view temporarily
direct_embedding_output_holder: query_embedding_value,
fav_signal: gr.update(value=current_fav_signal_value) # <--- Pass through fav_signal state
}
# Hide status message when changing view
updates_dict[status_message] = gr.update(value="", visible=False)
try:
target_results_list = []
target_index = 0
result_type = "unknown"
# Identify which result list and index to use based on active_view
if active_view == "standard":
target_results_list = std_results
target_index = std_index
result_type = "standard"
elif active_view == "llm":
target_results_list = llm_results
target_index = llm_index
result_type = "llm"
elif active_view == "favourites":
target_results_list = best_results
target_index = best_index
result_type = "favourites"
else:
logging.warning(f"Weiterlesen triggered in unexpected view state: {active_view}")
updates_dict[context_display] = gr.update(value="Kann Kontext in diesem Zustand nicht laden.")
updates_dict[context_area] = gr.update(visible=True)
updates_dict[load_previous_button] = gr.update(interactive=False)
updates_dict[load_next_button] = gr.update(interactive=False)
updates_dict[back_to_results_button] = gr.update(visible=True, interactive=True)
updates_dict[active_view_state] = "none" # Indicate an error/transition state
return updates_dict # Return early on error
# Call the UI function that fetches and formats the initial context
# Pass only the data it needs (index within the target list, the list itself, embedding, and type)
# The move_to_reading_area_ui function should return a dictionary of updates for UI components like context_display and displayed_context_passages state
read_updates = move_to_reading_area_ui(target_index, target_results_list, query_embedding_value, result_type)
# Update the active_view state to reflect entering context mode
# This state will be used by load_more and back buttons
updates_dict[active_view_state] = f"context_from_{result_type}"
# Merge the UI updates returned by move_to_reading_area_ui
updates_dict.update(read_updates)
except Exception as e:
logging.error(f"Error in move_to_reading wrapper: {e}", exc_info=True)
updates_dict[context_display] = gr.update(value=f"**Fehler:** Konnte Paragraph nicht in Lesebereich laden: {e}")
updates_dict[context_area] = gr.update(visible=True)
updates_dict[load_previous_button] = gr.update(interactive=False)
updates_dict[load_next_button] = gr.update(interactive=False)
updates_dict[back_to_results_button] = gr.update(visible=True, interactive=True)
updates_dict[active_view_state] = "error_context" # Indicate an error state
return updates_dict
# This wrapper function remains the same, it's bound to load_previous_button and load_next_button
def load_more_context_wrapper(direction, current_passages_state, query_embedding_value):
logging.info(f"Triggered: load_more_context_wrapper direction={direction}")
# This function's outputs are only context_display and displayed_context_passages state.
# It does NOT affect the overall UI layout or result list navigation buttons.
output_components = [context_display, displayed_context_passages]
try:
context_md, updated_passages_state = load_more_context(direction, current_passages_state, query_embedding_value)
# load_more_context returns a tuple (markdown_str, updated_state_list)
# Map these directly to the output components
updates_list = [
gr.update(value=context_md), # update context_display
updated_passages_state # update displayed_context_passages state
]
logging.debug(f"load_more_context_wrapper: Returning {len(updates_list)} updates.")
return updates_list
except Exception as e:
logging.error(f"Error in load_more_context wrapper: {e}", exc_info=True)
# On error, return error message and original state
error_md = format_context_markdown(current_passages_state or [], query_embedding_value) + f"\n\n**Fehler beim Laden des nächsten/vorherigen Paragraphen.**"
updates_list = [
gr.update(value=error_md),
current_passages_state # Return original state on error
]
return updates_list
# --- Define the combined list of all potential UI outputs ---
# This list is needed for functions that can trigger updates across multiple parts of the UI.
# We add the direct_embedding_output_holder state as well.
# fav_trigger_button is NOT in this list because it's strictly
# a hidden signaling component updated only by the fav logic binding's outputs.
# This list needs to be defined AFTER all components are defined in the Blocks context
all_ui_outputs = [
# States
full_search_results_state, current_result_index_state, displayed_context_passages,
llm_results_state, llm_result_index_state, active_view_state,
direct_embedding_output_holder,
best_results_state, best_index_state,
fav_signal,
# Shared Result UI Containers
standard_nav_row, single_result_group,
# MODIFIED: New Result UI Components
result_accordion, result_metadata_display, result_text,
# Tuning Accordion
result_tuning_accordion,
# Buttons in shared row
previous_result_button, next_result_button, weiterlesen_button,
# Context Area UI
context_area, context_display, load_previous_button, load_next_button,
back_to_results_button,
# Tuning Sliders (Keep them in the list because wrappers might update their visibility/interactivity,
# but the reset function explicitly avoids changing their values)
window_size_slider, weight_slider, decay_slider,
# Status message
status_message,
]
logging.info(f"Length of all_ui_outputs list (used for comprehensive updates): {len(all_ui_outputs)}")
# --- Bindings: Connect UI elements to functions ---
# Bind search buttons to their wrapper functions.
# These wrappers will return a dictionary of updates for the *entire* UI state.
search_button.click(
search_standard_wrapper,
inputs=[query_input, author_dropdown, window_size_slider, weight_slider, decay_slider],
# We must list ALL potential outputs here, including states and UI elements that might change visibility or content.
# Gradio will use the dictionary returned by the wrapper to update the matching outputs in this list.
outputs=all_ui_outputs
)
llm_rerank_button.click(
search_llm_rerank_wrapper,
inputs=[query_input, author_dropdown, window_size_slider, weight_slider, decay_slider],
outputs=all_ui_outputs
)
# Bind the favourites button to its wrapper
best_of_button.click(
refresh_best_wrapper,
inputs=[], # No direct inputs, it fetches from the fav_scores state
outputs=all_ui_outputs # It updates results display, navigation, and state
)
# Bind navigation buttons to a single wrapper that handles different view states
# Inputs include all state variables needed to know the current view and data
nav_inputs = [
current_result_index_state, full_search_results_state, # Standard state
llm_results_state, llm_result_index_state, # LLM state
best_results_state, best_index_state, # Favourites state
active_view_state # Current view indicator
]
# Outputs include all UI elements and states that might change during navigation
nav_outputs = all_ui_outputs # Navigation can affect the result display and state
previous_result_button.click(
lambda *args: navigate_results_wrapper("previous", *args), # Pass 'previous' as first arg
inputs=nav_inputs,
outputs=nav_outputs
)
next_result_button.click(
lambda *args: navigate_results_wrapper("next", *args), # Pass 'next' as first arg
inputs=nav_inputs,
outputs=nav_outputs
)
# Bind the "weiterlesen" button to a wrapper that handles different view states
# Inputs need state necessary to determine which result (standard, llm, fav) to load context for
# We also need fav_signal's current value to pass it through in the outputs.
read_inputs = [
full_search_results_state, current_result_index_state, # Standard state
llm_results_state, llm_result_index_state, # LLM state
best_results_state, best_index_state, # Favourites state
active_view_state, # Current view indicator (e.g., 'standard', 'llm', 'favourites')
direct_embedding_output_holder, # Embedding for highlighting in context
fav_signal # <--- ADDED fav_signal here as an input
]
# Outputs include all UI elements and states that change when entering context view
# This is why all_ui_outputs is used here.
read_outputs = all_ui_outputs
weiterlesen_button.click(
move_to_reading_wrapper,
inputs=read_inputs,
outputs=read_outputs
)
# Bind context navigation buttons
# load_more_context_wrapper already returns updates as a list [context_display_update, state_update]
# These only update the context display and state, not the main results area.
load_previous_button.click(
load_more_context_wrapper,
inputs=[gr.State('previous'), displayed_context_passages, direct_embedding_output_holder],
outputs=[context_display, displayed_context_passages], # Only update context display and state
scroll_to_output=False
)
load_next_button.click(
load_more_context_wrapper,
inputs=[gr.State('next'), displayed_context_passages, direct_embedding_output_holder],
outputs=[context_display, displayed_context_passages], # Only update context display and state
scroll_to_output=False
)
# Bind the "Zurück" button to a wrapper that handles returning to results list
# Inputs need states relevant to restoring the correct results view.
# We also need fav_signal's current value to pass it through in the outputs.
back_inputs = [
active_view_state, # Need to know which view we came from to go back correctly
full_search_results_state, current_result_index_state, # Standard state
llm_results_state, llm_result_index_state, # LLM state
best_results_state, best_index_state, # Favourites state
fav_signal # <--- ADDED fav_signal here as an input
]
# Outputs include all UI elements and states that change when returning to results view
back_outputs = all_ui_outputs
back_to_results_button.click(
go_back_to_results_wrapper,
inputs=back_inputs,
outputs=back_outputs
)
# --- Binding for favourite signaling ---
# This binding exposes the _on_fav function to the Gradio Client API via api_name="fav".
# The JS client will call the backend function associated with this api_name,
# providing a value for the component(s) in the 'inputs' list.
# _on_fav expects the value of fav_signal as its single argument.
# It returns updates for fav_signal (to clear it) and status_message.
fav_trigger_button.click(
_on_fav,
inputs=[fav_signal], # This tells Gradio that the API call for /fav expects ONE input, which should correspond to fav_signal's value.
outputs=[fav_signal, status_message], # These are the components _on_fav will update
api_name="fav" # <-- Exposes route /fav
)
# --- Launch the Application ---
if __name__ == "__main__":
print("\n" + "="*50)
print("--- Performing Startup Checks ---")
startup_warnings = []
if collection is None: startup_warnings.append("--- ERROR: ChromaDB Collection could not be loaded/initialized.")
elif collection.count() == 0: startup_warnings.append("--- WARNUNG: ChromaDB Collection is empty. Search will yield no results.")
elif not unique_authors: startup_warnings.append("--- WARNUNG: No unique authors found in DB metadata (check 'author' key). Filter will be empty.")
if not API_KEY: startup_warnings.append("--- WARNUNG: GEMINI_API_KEY not found. Embedding/LLM features WILL FAIL.")
if API_KEY and llm_rerank_model is None: startup_warnings.append(f"--- WARNUNG: Gemini LLM Re-Rank Model ({LLM_RERANK_MODEL_NAME}) failed to initialize despite API key being present.")
if not os.path.exists(PROMPT_LOG_DIR) or not os.path.isdir(PROMPT_LOG_DIR): startup_warnings.append(f"--- WARNUNG: Prompt log directory '{PROMPT_LOG_DIR}' not found or is not a directory.")
if startup_warnings:
print("!!! Startup Issues Found !!!")
for w in startup_warnings: print(w)
else:
print("--- Configuration checks passed successfully. ---")
print("\n" + "--- Configuration Summary ---")
print(f"- Embedding Model: {EMBEDDING_MODEL}")
print(f"- LLM Re-Rank Model: {LLM_RERANK_MODEL_NAME}")
print(f"- Initial DB Fetch Size: {INITIAL_RESULTS_FOR_RERANK}")
print(f"- 1st Pass Re-rank Window: +/- {RERANK_WINDOW_SIZE} sentences")
print(f"- 1st Pass Re-rank Weight: {RERANK_WEIGHT:.2f}, Decay: {RERANK_DECAY:.2f}")
print(f"- LLM Candidate Count: {LLM_RERANK_CANDIDATE_COUNT}")
print(f"- LLM Target Result Count: {LLM_RERANK_TARGET_COUNT}")
print(f"- Max Results per Author (Final): {MAX_RESULTS_PER_AUTHOR}")
print(f"- Max Favourites Displayed: {MAX_FAVOURITES}")
print(f"- LLM Prompts logged to: '{PROMPT_LOG_DIR}'")
print(f"- Favourites saved to: '{FAV_FILE}'") # Log fav file location
print("--- End Summary ---")
print("\nStarting Gradio Interface...")
print("="*50 + "\n")
demo.launch(
server_name="0.0.0.0",
share=False,
debug=True # Keep debug=True for now to see all logs
) |