File size: 6,989 Bytes
ca70154 cc9cfea ca70154 cc9cfea ca70154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# app.py
import gradio as gr
import os
from pathlib import Path
# import random
# import time
import torch
import torch.nn as nn
import pandas as pd
from nlpia2.init import SRC_DATA_DIR, maybe_download
from nlpia2.string_normalizers import Asciifier, ASCII_NAME_CHARS
name_char_vocab_size = len(ASCII_NAME_CHARS) + 1 # Plus EOS marker
# Transcode Unicode str ASCII without embelishments, diacritics (https://stackoverflow.com/a/518232/2809427)
asciify = Asciifier(include=ASCII_NAME_CHARS)
def find_files(path, pattern):
return Path(path).glob(pattern)
# all_letters = ''.join(set(ASCII_NAME_CHARS).union(set(" .,;'")))
char2i = {c: i for i, c in enumerate(ASCII_NAME_CHARS)}
# !curl -O https://download.pytorch.org/tutorial/data.zip; unzip data.zip
print(f'asciify("O’Néàl") => {asciify("O’Néàl")}')
# Build the category_lines dictionary, a list of names per language
category_lines = {}
all_categories = []
labeled_lines = []
categories = []
for filepath in find_files(SRC_DATA_DIR / 'names', '*.txt'):
filename = Path(filepath).name
filepath = maybe_download(filename=Path('names') / filename)
with filepath.open() as fin:
lines = [asciify(line.rstrip()) for line in fin]
category = Path(filename).with_suffix('')
categories.append(category)
labeled_lines += list(zip(lines, [category] * len(lines)))
n_categories = len(categories)
df = pd.DataFrame(labeled_lines, columns=('name', 'category'))
def readLines(filename):
lines = open(filename, encoding='utf-8').read().strip().split('\n')
return [asciify(line) for line in lines]
for filename in find_files(path='data/names', pattern='*.txt'):
category = os.path.splitext(os.path.basename(filename))[0]
all_categories.append(category)
lines = readLines(filename)
category_lines[category] = lines
n_categories = len(all_categories)
######################################################################
# Now we have ``category_lines``, a dictionary mapping each category
# (language) to a list of lines (names). We also kept track of
# ``all_categories`` (just a list of languages) and ``n_categories`` for
# later reference.
#
print(category_lines['Italian'][:5])
######################################################################
# Turning Names into Tensors
# --------------------------
#
# Now that we have all the names organized, we need to turn them into
# Tensors to make any use of them.
#
# To represent a single letter, we use a "one-hot vector" of size
# ``<1 x n_letters>``. A one-hot vector is filled with 0s except for a 1
# at index of the current letter, e.g. ``"b" = <0 1 0 0 0 ...>``.
#
# To make a word we join a bunch of those into a 2D matrix
# ``<line_length x 1 x n_letters>``.
#
# That extra 1 dimension is because PyTorch assumes everything is in
# batches - we're just using a batch size of 1 here.
#
# Find letter index from all_letters, e.g. "a" = 0
def letterToIndex(c):
return char2i[c]
# Just for demonstration, turn a letter into a <1 x n_letters> Tensor
def encode_one_hot_vec(letter):
tensor = torch.zeros(1, len(ASCII_NAME_CHARS))
tensor[0][letterToIndex(letter)] = 1
return tensor
# Turn a line into a <line_length x 1 x n_letters>,
# or an array of one-hot letter vectors
def encode_one_hot_seq(line):
tensor = torch.zeros(len(line), 1, len(ASCII_NAME_CHARS))
for li, letter in enumerate(line):
tensor[li][0][letterToIndex(letter)] = 1
return tensor
print(encode_one_hot_vec('A'))
print(encode_one_hot_seq('Abe').size())
######################################################################
# Creating the Network
# ====================
#
# Before autograd, creating a recurrent neural network in Torch involved
# cloning the parameters of a layer over several timesteps. The layers
# held hidden state and gradients which are now entirely handled by the
# graph itself. This means you can implement a RNN in a very "pure" way,
# as regular feed-forward layers.
#
# This RNN module (mostly copied from `the PyTorch for Torch users
# tutorial <https://pytorch.org/tutorials/beginner/former_torchies/
# nn_tutorial.html#example-2-recurrent-net>`__)
# is just 2 linear layers which operate on an input and hidden state, with
# a LogSoftmax layer after the output.
#
# .. figure:: https://i.imgur.com/Z2xbySO.png
# :alt:
#
#
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(input_size + hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, char_tens, hidden):
combined = torch.cat((char_tens, hidden), 1)
hidden = self.i2h(combined)
output = self.i2o(combined)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
n_hidden = 128
rnn = RNN(len(ASCII_NAME_CHARS), n_hidden, n_categories)
input = encode_one_hot_vec('A')
hidden = torch.zeros(1, n_hidden)
output, next_hidden = rnn(input, hidden)
def categoryFromOutput(output):
top_n, top_i = output.topk(1)
category_i = top_i[0].item()
return all_categories[category_i], category_i
def output_from_str(s):
global rnn
input = encode_one_hot_seq(s)
hidden = torch.zeros(1, n_hidden)
output, next_hidden = rnn(input[0], hidden)
print(output)
return categoryFromOutput(output)
########################################
# load/save test for use on the huggingface spaces server
# torch.save(rnn.state_dict(), 'rnn_from_scratch_name_nationality.state_dict.pickle')
state_dict = torch.load('rnn_from_scratch_name_nationality.state_dict.pickle')
rnn.load_state_dict(state_dict)
def evaluate(line_tensor):
hidden = rnn.initHidden()
for i in range(line_tensor.size()[0]):
output, hidden = rnn(line_tensor[i], hidden)
return output
def predict(input_line, n_predictions=3):
print('\n> %s' % input_line)
with torch.no_grad():
output = evaluate(encode_one_hot_seq(input_line))
# Get top N categories
topv, topi = output.topk(n_predictions, 1, True)
predictions = []
for i in range(n_predictions):
value = topv[0][i].item()
category_index = topi[0][i].item()
print('(%.2f) %s' % (value, all_categories[category_index]))
predictions.append([value, all_categories[category_index]])
predict('Dovesky')
predict('Jackson')
predict('Satoshi')
# load/save test for use on the huggingface spaces server
########################################
def greet_nationality(name):
nationality = predict(name)
return f"Hello {name}!!\n Your name seems to be from {nationality}. Am I right?"
iface = gr.Interface(fn=greet_nationality, inputs="text", outputs="text")
iface.launch()
|