File size: 3,281 Bytes
53f862b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from functools import partial

import gradio as gr
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import numpy as np
from sklearn import datasets, manifold


SEED = 0
N_COMPONENTS = 2
np.random.seed(SEED)


def get_circles(n_samples):
    X, color = datasets.make_circles(
        n_samples=n_samples,
        factor=0.5,
        noise=0.05,
        random_state=SEED
    )
    return X, color


def get_s_curve(n_samples):
    X, color = datasets.make_s_curve(n_samples=n_samples, random_state=SEED)
    X[:, 1], X[:, 2] = X[:, 2], X[:, 1].copy()
    return X, color


def get_uniform_grid(n_samples):
    x = np.linspace(0, 1, int(np.sqrt(n_samples)))
    xx, yy = np.meshgrid(x, x)
    X = np.hstack(
        [
            xx.ravel().reshape(-1, 1),
            yy.ravel().reshape(-1, 1),
        ]
    )
    color = xx.ravel()
    return X, color


DATA_MAPPING = {
    'circles': get_circles,
    's-curve': get_s_curve,
    'uniform grid': get_uniform_grid,
}



def plot_data(dataset: str, perplexity: int, n_samples: int, tsne: bool):
    if isinstance(perplexity, dict):
        perplexity = perplexity['value']
    else:
        perplexity = int(perplexity)

    X, color = DATA_MAPPING[dataset](n_samples)
    if tsne:
        tsne = manifold.TSNE(
            n_components=N_COMPONENTS,
            init="random",
            random_state=0,
            perplexity=perplexity,
            n_iter=400,
        )
        Y = tsne.fit_transform(X)
    else:
        Y = X

    fig, ax = plt.subplots(figsize=(7, 7))

    ax.scatter(Y[:, 0], Y[:, 1], c=color)
    ax.xaxis.set_major_formatter(NullFormatter())
    ax.yaxis.set_major_formatter(NullFormatter())
    ax.axis("tight")

    return fig


title = "t-SNE: The effect of various perplexity values on the shape"
description = (
    "An illustration of t-SNE on the two concentric circles and the"
    "S-curve datasets for different perplexity values."
)


with gr.Blocks(title=title) as demo:
    gr.HTML(f"<b>{title}</b>")
    gr.Markdown(description)

    input_data = gr.Radio(
        list(DATA_MAPPING),
        value="circles",
        label="dataset"
    )
    n_samples = gr.Slider(
        minimum=100,
        maximum=1000,
        value=150,
        step=25,
        label='Number of Samples'
    )
    perplexity = gr.Slider(
        minimum=2,
        maximum=100,
        value=5,
        step=1,
        label='Perplexity'
    )
    with gr.Row():
        with gr.Column():
            plot = gr.Plot(label="Original data")
            fn = partial(plot_data, tsne=False)
            input_data.change(fn=fn, inputs=[input_data, perplexity, n_samples], outputs=plot)
            perplexity.change(fn=fn, inputs=[input_data, perplexity, n_samples], outputs=plot)
            n_samples.change(fn=fn, inputs=[input_data, perplexity, n_samples], outputs=plot)
        with gr.Column():
            plot = gr.Plot(label="t-SNE")
            fn = partial(plot_data, tsne=True)
            input_data.change(fn=fn, inputs=[input_data, perplexity, n_samples], outputs=plot)
            perplexity.change(fn=fn, inputs=[input_data, perplexity, n_samples], outputs=plot)
            n_samples.change(fn=fn, inputs=[input_data, perplexity, n_samples], outputs=plot)


demo.launch()