Spaces:
Running
on
Zero
Running
on
Zero
Himanshu-AT
commited on
Commit
·
4352a3f
1
Parent(s):
c6696f9
Add gemini.py for generative AI styling prompt generation
Browse files- app.py +126 -52
- gemini.py +67 -0
- segment-anything +1 -0
app.py
CHANGED
@@ -1,25 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
import spaces
|
5 |
import torch
|
6 |
-
import spaces
|
7 |
import random
|
8 |
-
|
9 |
-
from diffusers import FluxFillPipeline
|
10 |
from PIL import Image
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
-
pipe = FluxFillPipeline.from_pretrained(
|
|
|
|
|
17 |
pipe.load_lora_weights("alvdansen/flux-koda")
|
18 |
-
# pipe.enable_sequential_cpu_offload()
|
19 |
-
# pipe.enable_fp16()
|
20 |
pipe.enable_lora()
|
21 |
-
# pipe.vae.enable_slicing()
|
22 |
-
# pipe.vae.enable_tiling()
|
23 |
|
24 |
def calculate_optimal_dimensions(image: Image.Image):
|
25 |
# Extract the original dimensions
|
@@ -52,22 +48,99 @@ def calculate_optimal_dimensions(image: Image.Image):
|
|
52 |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
53 |
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
54 |
|
55 |
-
# Ensure
|
56 |
width = max(width, 576) if width == FIXED_DIMENSION else width
|
57 |
height = max(height, 576) if height == FIXED_DIMENSION else height
|
58 |
|
59 |
return width, height
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
image = edit_images["background"]
|
66 |
width, height = calculate_optimal_dimensions(image)
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
if randomize_seed:
|
69 |
seed = random.randint(0, MAX_SEED)
|
70 |
-
|
|
|
|
|
71 |
prompt=prompt,
|
72 |
image=image,
|
73 |
mask_image=mask,
|
@@ -76,23 +149,14 @@ def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height
|
|
76 |
guidance_scale=guidance_scale,
|
77 |
num_inference_steps=num_inference_steps,
|
78 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
79 |
-
# lora_scale=0.75 // not supported in this version
|
80 |
).images[0]
|
81 |
|
82 |
-
output_image_jpg =
|
83 |
output_image_jpg.save("output.jpg", "JPEG")
|
84 |
-
|
85 |
return output_image_jpg, seed
|
86 |
-
# return image, seed
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
# "a tiny astronaut hatching from an egg on the moon",
|
91 |
-
# "a cat holding a sign that says hello world",
|
92 |
-
# "an anime illustration of a wiener schnitzel",
|
93 |
-
]
|
94 |
-
|
95 |
-
css="""
|
96 |
#col-container {
|
97 |
margin: 0 auto;
|
98 |
max-width: 1000px;
|
@@ -100,34 +164,51 @@ css="""
|
|
100 |
"""
|
101 |
|
102 |
with gr.Blocks(css=css) as demo:
|
103 |
-
|
104 |
with gr.Column(elem_id="col-container"):
|
105 |
-
gr.Markdown(
|
106 |
-
""")
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
|
|
109 |
edit_image = gr.ImageEditor(
|
110 |
-
label='Upload and draw mask
|
111 |
type='pil',
|
112 |
sources=["upload", "webcam"],
|
113 |
image_mode='RGB',
|
114 |
-
layers=False,
|
115 |
brush=gr.Brush(colors=["#FFFFFF"]),
|
116 |
-
# height=600
|
117 |
)
|
118 |
prompt = gr.Text(
|
119 |
-
label="Prompt",
|
120 |
show_label=False,
|
121 |
max_lines=2,
|
122 |
-
placeholder="Enter your prompt",
|
123 |
container=False,
|
124 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
run_button = gr.Button("Run")
|
126 |
-
|
127 |
result = gr.Image(label="Result", show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
with gr.Accordion("Advanced Settings", open=False):
|
130 |
-
|
131 |
seed = gr.Slider(
|
132 |
label="Seed",
|
133 |
minimum=0,
|
@@ -135,11 +216,8 @@ with gr.Blocks(css=css) as demo:
|
|
135 |
step=1,
|
136 |
value=0,
|
137 |
)
|
138 |
-
|
139 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
140 |
-
|
141 |
with gr.Row():
|
142 |
-
|
143 |
width = gr.Slider(
|
144 |
label="Width",
|
145 |
minimum=256,
|
@@ -148,7 +226,6 @@ with gr.Blocks(css=css) as demo:
|
|
148 |
value=1024,
|
149 |
visible=False
|
150 |
)
|
151 |
-
|
152 |
height = gr.Slider(
|
153 |
label="Height",
|
154 |
minimum=256,
|
@@ -157,19 +234,16 @@ with gr.Blocks(css=css) as demo:
|
|
157 |
value=1024,
|
158 |
visible=False
|
159 |
)
|
160 |
-
|
161 |
with gr.Row():
|
162 |
-
|
163 |
guidance_scale = gr.Slider(
|
164 |
label="Guidance Scale",
|
165 |
minimum=1,
|
166 |
maximum=30,
|
167 |
step=0.5,
|
168 |
-
value=
|
169 |
)
|
170 |
-
|
171 |
num_inference_steps = gr.Slider(
|
172 |
-
label="Number of
|
173 |
minimum=1,
|
174 |
maximum=50,
|
175 |
step=1,
|
@@ -178,9 +252,9 @@ with gr.Blocks(css=css) as demo:
|
|
178 |
|
179 |
gr.on(
|
180 |
triggers=[run_button.click, prompt.submit],
|
181 |
-
fn
|
182 |
-
inputs
|
183 |
-
outputs
|
184 |
)
|
185 |
|
186 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
|
|
3 |
import torch
|
|
|
4 |
import random
|
|
|
|
|
5 |
from PIL import Image
|
6 |
+
import cv2
|
7 |
|
8 |
+
# ------------------ Inpainting Pipeline Setup ------------------ #
|
9 |
+
from diffusers import FluxFillPipeline
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
MAX_IMAGE_SIZE = 2048
|
13 |
|
14 |
+
pipe = FluxFillPipeline.from_pretrained(
|
15 |
+
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
16 |
+
).to("cuda")
|
17 |
pipe.load_lora_weights("alvdansen/flux-koda")
|
|
|
|
|
18 |
pipe.enable_lora()
|
|
|
|
|
19 |
|
20 |
def calculate_optimal_dimensions(image: Image.Image):
|
21 |
# Extract the original dimensions
|
|
|
48 |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
49 |
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
50 |
|
51 |
+
# Ensure minimum dimensions are met
|
52 |
width = max(width, 576) if width == FIXED_DIMENSION else width
|
53 |
height = max(height, 576) if height == FIXED_DIMENSION else height
|
54 |
|
55 |
return width, height
|
56 |
|
57 |
+
# ------------------ SAM (Transformers) Imports and Initialization ------------------ #
|
58 |
+
from transformers import SamModel, SamProcessor
|
59 |
+
|
60 |
+
# Load the model and processor from Hugging Face.
|
61 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-base")
|
62 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
|
63 |
+
# (The model will run on CPU by default; if you have a CUDA device, you can send the model to "cuda")
|
64 |
+
sam_model.to("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
+
|
66 |
+
def generate_mask_with_sam(image: Image.Image, mask_prompt: str):
|
67 |
+
"""
|
68 |
+
Generate a segmentation mask using SAM (via Hugging Face Transformers).
|
69 |
+
|
70 |
+
The mask_prompt is expected to be a comma-separated string of two integers,
|
71 |
+
e.g. "450,600" representing an (x,y) coordinate in the image.
|
72 |
+
|
73 |
+
The function converts the coordinate into the proper input format for SAM and returns a binary mask.
|
74 |
+
"""
|
75 |
+
if mask_prompt.strip() == "":
|
76 |
+
raise ValueError("No mask prompt provided.")
|
77 |
+
|
78 |
+
try:
|
79 |
+
# Parse the mask_prompt into a coordinate
|
80 |
+
coords = [int(x.strip()) for x in mask_prompt.split(",")]
|
81 |
+
if len(coords) != 2:
|
82 |
+
raise ValueError("Expected two comma-separated integers (x,y).")
|
83 |
+
except Exception as e:
|
84 |
+
raise ValueError("Invalid mask prompt. Please provide coordinates as 'x,y'. Error: " + str(e))
|
85 |
+
|
86 |
+
# The SAM processor expects a list of input points.
|
87 |
+
# Format the point as a list of lists; here we assume one point per image.
|
88 |
+
# (The Transformers SAM expects the points in [x, y] order.)
|
89 |
+
input_points = [coords] # e.g. [[450,600]]
|
90 |
+
# Optionally, you can supply input_labels (1 for foreground, 0 for background)
|
91 |
+
input_labels = [1]
|
92 |
+
|
93 |
+
# Prepare the inputs for the SAM processor.
|
94 |
+
inputs = sam_processor(images=image,
|
95 |
+
input_points=[input_points],
|
96 |
+
input_labels=[input_labels],
|
97 |
+
return_tensors="pt")
|
98 |
+
|
99 |
+
# Move tensors to the same device as the model.
|
100 |
+
device = next(sam_model.parameters()).device
|
101 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
102 |
+
|
103 |
+
# Forward pass through SAM.
|
104 |
+
with torch.no_grad():
|
105 |
+
outputs = sam_model(**inputs)
|
106 |
+
|
107 |
+
# The output contains predicted masks; we take the first mask from the first prompt.
|
108 |
+
# (Assuming outputs.pred_masks is of shape (batch_size, num_masks, H, W))
|
109 |
+
pred_masks = outputs.pred_masks # Tensor of shape (1, num_masks, H, W)
|
110 |
+
mask = pred_masks[0][0].detach().cpu().numpy()
|
111 |
+
|
112 |
+
# Convert the mask to binary (0 or 255) using a threshold.
|
113 |
+
mask_bin = (mask > 0.5).astype(np.uint8) * 255
|
114 |
+
mask_pil = Image.fromarray(mask_bin)
|
115 |
+
return mask_pil
|
116 |
+
|
117 |
+
# ------------------ Inference Function ------------------ #
|
118 |
+
@gr.blocks.GPU(durations=300)
|
119 |
+
def infer(edit_images, prompt, mask_prompt,
|
120 |
+
seed=42, randomize_seed=False, width=1024, height=1024,
|
121 |
+
guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
122 |
+
# Get the base image from the "background" layer.
|
123 |
image = edit_images["background"]
|
124 |
width, height = calculate_optimal_dimensions(image)
|
125 |
+
|
126 |
+
# If a mask prompt is provided, use the SAM-based mask generator.
|
127 |
+
if mask_prompt and mask_prompt.strip() != "":
|
128 |
+
try:
|
129 |
+
mask = generate_mask_with_sam(image, mask_prompt)
|
130 |
+
except Exception as e:
|
131 |
+
raise ValueError("Error generating mask from prompt: " + str(e))
|
132 |
+
else:
|
133 |
+
# Fall back to using a manually drawn mask (from the first layer).
|
134 |
+
try:
|
135 |
+
mask = edit_images["layers"][0]
|
136 |
+
except (TypeError, IndexError):
|
137 |
+
raise ValueError("No mask provided. Please either draw a mask or supply a mask prompt.")
|
138 |
+
|
139 |
if randomize_seed:
|
140 |
seed = random.randint(0, MAX_SEED)
|
141 |
+
|
142 |
+
# Run the inpainting diffusion pipeline with the provided prompt and mask.
|
143 |
+
image_out = pipe(
|
144 |
prompt=prompt,
|
145 |
image=image,
|
146 |
mask_image=mask,
|
|
|
149 |
guidance_scale=guidance_scale,
|
150 |
num_inference_steps=num_inference_steps,
|
151 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
|
|
152 |
).images[0]
|
153 |
|
154 |
+
output_image_jpg = image_out.convert("RGB")
|
155 |
output_image_jpg.save("output.jpg", "JPEG")
|
|
|
156 |
return output_image_jpg, seed
|
|
|
157 |
|
158 |
+
# ------------------ Gradio UI ------------------ #
|
159 |
+
css = """
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
#col-container {
|
161 |
margin: 0 auto;
|
162 |
max-width: 1000px;
|
|
|
164 |
"""
|
165 |
|
166 |
with gr.Blocks(css=css) as demo:
|
|
|
167 |
with gr.Column(elem_id="col-container"):
|
168 |
+
gr.Markdown("# FLUX.1 [dev] with SAM (Transformers) Mask Generation")
|
|
|
169 |
with gr.Row():
|
170 |
with gr.Column():
|
171 |
+
# The image editor now allows you to optionally draw a mask.
|
172 |
edit_image = gr.ImageEditor(
|
173 |
+
label='Upload Image (and optionally draw a mask)',
|
174 |
type='pil',
|
175 |
sources=["upload", "webcam"],
|
176 |
image_mode='RGB',
|
177 |
+
layers=False, # We will generate a mask automatically if needed.
|
178 |
brush=gr.Brush(colors=["#FFFFFF"]),
|
|
|
179 |
)
|
180 |
prompt = gr.Text(
|
181 |
+
label="Inpainting Prompt",
|
182 |
show_label=False,
|
183 |
max_lines=2,
|
184 |
+
placeholder="Enter your inpainting prompt",
|
185 |
container=False,
|
186 |
)
|
187 |
+
mask_prompt = gr.Text(
|
188 |
+
label="Mask Prompt (enter a coordinate as 'x,y')",
|
189 |
+
show_label=True,
|
190 |
+
placeholder="E.g. 450,600",
|
191 |
+
container=True,
|
192 |
+
)
|
193 |
+
generate_mask_btn = gr.Button("Generate Mask")
|
194 |
+
mask_preview = gr.Image(label="Mask Preview", show_label=True)
|
195 |
run_button = gr.Button("Run")
|
|
|
196 |
result = gr.Image(label="Result", show_label=False)
|
197 |
+
|
198 |
+
# Button to preview the generated mask.
|
199 |
+
def on_generate_mask(image, mask_prompt):
|
200 |
+
if image is None or mask_prompt.strip() == "":
|
201 |
+
return None
|
202 |
+
mask = generate_mask_with_sam(image, mask_prompt)
|
203 |
+
return mask
|
204 |
+
|
205 |
+
generate_mask_btn.click(
|
206 |
+
fn=on_generate_mask,
|
207 |
+
inputs=[edit_image, mask_prompt],
|
208 |
+
outputs=[mask_preview]
|
209 |
+
)
|
210 |
|
211 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
212 |
seed = gr.Slider(
|
213 |
label="Seed",
|
214 |
minimum=0,
|
|
|
216 |
step=1,
|
217 |
value=0,
|
218 |
)
|
|
|
219 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
220 |
with gr.Row():
|
|
|
221 |
width = gr.Slider(
|
222 |
label="Width",
|
223 |
minimum=256,
|
|
|
226 |
value=1024,
|
227 |
visible=False
|
228 |
)
|
|
|
229 |
height = gr.Slider(
|
230 |
label="Height",
|
231 |
minimum=256,
|
|
|
234 |
value=1024,
|
235 |
visible=False
|
236 |
)
|
|
|
237 |
with gr.Row():
|
|
|
238 |
guidance_scale = gr.Slider(
|
239 |
label="Guidance Scale",
|
240 |
minimum=1,
|
241 |
maximum=30,
|
242 |
step=0.5,
|
243 |
+
value=3.5,
|
244 |
)
|
|
|
245 |
num_inference_steps = gr.Slider(
|
246 |
+
label="Number of Inference Steps",
|
247 |
minimum=1,
|
248 |
maximum=50,
|
249 |
step=1,
|
|
|
252 |
|
253 |
gr.on(
|
254 |
triggers=[run_button.click, prompt.submit],
|
255 |
+
fn=infer,
|
256 |
+
inputs=[edit_image, prompt, mask_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
257 |
+
outputs=[result, seed]
|
258 |
)
|
259 |
|
260 |
+
demo.launch()
|
gemini.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import google.generativeai as genai
|
2 |
+
# import os
|
3 |
+
|
4 |
+
# api_key = os.getenv("GEMINI_API_KEY")
|
5 |
+
# if not api_key:
|
6 |
+
# raise ValueError("API key not found")
|
7 |
+
|
8 |
+
api_key="AIzaSyBFGmov28dektbVZ5MfPT5o-THOgej2u24"
|
9 |
+
|
10 |
+
genai.configure(api_key=api_key)
|
11 |
+
|
12 |
+
model = genai.GenerativeModel("gemini-1.5-flash")
|
13 |
+
|
14 |
+
prompt1 = """An young indian office lady, standing in front of pot inside office with exotic plants"""
|
15 |
+
|
16 |
+
system_prompt = f"""\
|
17 |
+
<SYSTEM_PROMPT>
|
18 |
+
Act as a professional stylist and generate highly detailed prompt styling suggestions based on a given look or style preference.
|
19 |
+
The details should be highly detailed simialar to how a professional stylist would describe a look. Use EXAMPLE_INPUT and EXAMPLE_OUTPUT \
|
20 |
+
as a reference as example for properly understand how exactly you have to describe faces
|
21 |
+
|
22 |
+
Input: A general prompt describing the look or style preference.
|
23 |
+
|
24 |
+
Output: A well-structured, detailed styling guide based on face shape, eyes, lips, hair, skin tone, and body type.
|
25 |
+
|
26 |
+
Step 1: Extract Core Elements
|
27 |
+
- Face Shape: Oval, Round, Square, Heart, Diamond, etc.
|
28 |
+
- Eye Shape & Color: Almond, Hooded, Monolid, Deep-set; Brown, Blue, Green, etc.
|
29 |
+
- Lips: Thin, Full, Defined Cupid’s bow, etc.
|
30 |
+
- Hair Type & Length: Straight, Wavy, Curly, Coily; Short, Medium, Long.
|
31 |
+
- Skin Tone: Fair, Medium, Olive, Dark, etc.
|
32 |
+
- Body Type: Petite, Tall, Athletic, Curvy, etc.
|
33 |
+
- Occasion: Casual, Formal, Streetwear, Vintage, Business, Party, etc.
|
34 |
+
|
35 |
+
Step 2: Generate a Detailed Styling Prompt
|
36 |
+
Given the extracted details, the generator will create a tailored styling suggestion.
|
37 |
+
</SYSTEM_PROMPT>
|
38 |
+
|
39 |
+
<EXAMPLE_INPUT>
|
40 |
+
An young indian girl standing in front of a rock wall with visible large rocks
|
41 |
+
</EXAMPLE_INPUT>
|
42 |
+
|
43 |
+
✨ Generated Styling Prompt:
|
44 |
+
<EXAMPLE_OUTPUT>
|
45 |
+
A young Indian girl with warm brown skin and expressive almond-shaped eyes stands
|
46 |
+
gracefully in front of a textured rock wall with large, visible stones. Her long,
|
47 |
+
wavy black hair cascades over her shoulders, catching the soft sunlight. She
|
48 |
+
wears a flowing, earth-toned bohemian dress that complements the rugged background,
|
49 |
+
with delicate golden jewelry adding a subtle elegance. Her full lips curve into a
|
50 |
+
serene smile as she gazes into the distance, embodying a harmonious blend of strength
|
51 |
+
and grace.
|
52 |
+
</EXAMPLE_OUTPUT>
|
53 |
+
|
54 |
+
<RULES>
|
55 |
+
- you should only return the prompt and nothing else
|
56 |
+
- you should not return the system prompt
|
57 |
+
- you should not return any other details from prompt
|
58 |
+
</RULES>
|
59 |
+
|
60 |
+
<NORMAL_PROMPT>
|
61 |
+
${prompt1}
|
62 |
+
</NORMAL_PROMPT>
|
63 |
+
"""
|
64 |
+
|
65 |
+
|
66 |
+
response = model.generate_content(system_prompt)
|
67 |
+
print(response.text)
|
segment-anything
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit dca509fe793f601edb92606367a655c15ac00fdf
|