Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import os | |
import random | |
import json | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import zipfile | |
import cv2 # Added OpenCV import | |
from diffusers import FluxFillPipeline, AutoencoderKL | |
from PIL import Image | |
# from samgeo.text_sam import LangSAM | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# sam = LangSAM(model_type="sam2-hiera-large").to(device) | |
# Initialize vae model for 16-step encoding | |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda") | |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") | |
with open("lora_models.json", "r") as f: | |
lora_models = json.load(f) | |
def download_model(model_name, model_path): | |
print(f"Downloading model: {model_name} from {model_path}") | |
try: | |
pipe.load_lora_weights(model_path) | |
print(f"Successfully downloaded model: {model_name}") | |
except Exception as e: | |
print(f"Failed to download model: {model_name}. Error: {e}") | |
# Iterate through the models and download each one | |
for model_name, model_path in lora_models.items(): | |
download_model(model_name, model_path) | |
lora_models["None"] = None | |
def calculate_optimal_dimensions(image: Image.Image): | |
# Extract the original dimensions | |
original_width, original_height = image.size | |
# Set constants | |
MIN_ASPECT_RATIO = 9 / 16 | |
MAX_ASPECT_RATIO = 16 / 9 | |
FIXED_DIMENSION = 1024 | |
# Calculate the aspect ratio of the original image | |
original_aspect_ratio = original_width / original_height | |
# Determine which dimension to fix | |
if original_aspect_ratio > 1: # Wider than tall | |
width = FIXED_DIMENSION | |
height = round(FIXED_DIMENSION / original_aspect_ratio) | |
else: # Taller than wide | |
height = FIXED_DIMENSION | |
width = round(FIXED_DIMENSION * original_aspect_ratio) | |
# Ensure dimensions are multiples of 8 | |
width = (width // 8) * 8 | |
height = (height // 8) * 8 | |
# Enforce aspect ratio limits | |
calculated_aspect_ratio = width / height | |
if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
# Ensure width and height remain above the minimum dimensions | |
width = max(width, 576) if width == FIXED_DIMENSION else width | |
height = max(height, 576) if height == FIXED_DIMENSION else height | |
return width, height | |
def process_unmasked_area(image, mask, blur_strength=25): | |
""" | |
Process the unmasked portion of the image to remove context while preserving the masked area | |
Args: | |
image: PIL Image - the original input image | |
mask: PIL Image - the mask with white (255) indicating the area to preserve | |
blur_strength: int - strength of blur to apply to unmasked regions | |
Returns: | |
PIL Image with unmasked regions processed | |
""" | |
# Convert PIL images to numpy arrays for OpenCV processing | |
img_np = np.array(image) | |
mask_np = np.array(mask) | |
# Ensure mask is binary (0 and 255) | |
_, mask_binary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY) | |
# Create inverted mask (255 in areas we want to process) | |
mask_inv = cv2.bitwise_not(mask_binary) | |
# Apply strong blur to remove context in unmasked areas | |
blurred = cv2.GaussianBlur(img_np, (blur_strength, blur_strength), 0) | |
# Create the processed image | |
# Keep original pixels where mask is white (255) | |
# Use blurred pixels where mask is black (0) | |
processed_np = np.where(mask_binary[:, :, None] == 255, img_np, blurred) | |
# Convert back to PIL image | |
processed_image = Image.fromarray(processed_np) | |
return processed_image | |
def vae_encode_16steps(image): | |
""" | |
Encode image using the VAE with 16 steps | |
Args: | |
image: PIL Image to encode | |
Returns: | |
Encoded latent representation | |
""" | |
# Convert PIL image to tensor | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
image_tensor = transform(image).unsqueeze(0).to("cuda") | |
# Encode with 16 steps | |
with torch.no_grad(): | |
latent = vae.encode(image_tensor, num_inference_steps=16).latent_dist.sample() | |
latent = latent * vae.config.scaling_factor | |
return latent | |
def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): | |
# pipe.enable_xformers_memory_efficient_attention() | |
gr.Info("Infering") | |
if lora_model != "None": | |
pipe.load_lora_weights(lora_models[lora_model]) | |
pipe.enable_lora() | |
gr.Info("starting checks") | |
image = edit_images["background"] | |
mask = edit_images["layers"][0] | |
if not image: | |
gr.Info("Please upload an image.") | |
return None, None | |
width, height = calculate_optimal_dimensions(image) | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Process the unmasked portion to remove context | |
processed_image = process_unmasked_area(image, mask) | |
# Create latent encodings using VAE with 16 steps | |
image_latent = vae_encode_16steps(processed_image) | |
gr.Info("generating image") | |
image = pipe( | |
# Use the encoded image latent | |
mask_image_latent=image_latent, | |
prompt=prompt, | |
prompt_2=prompt, | |
image=processed_image, | |
mask_image=mask, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
# strength=strength, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator(device='cuda').manual_seed(seed), | |
# generator=torch.Generator().manual_seed(seed), | |
# lora_scale=0.75 // not supported in this version | |
).images[0] | |
output_image_jpg = image.convert("RGB") | |
output_image_jpg.save("output.jpg", "JPEG") | |
return output_image_jpg, seed | |
# return image, seed | |
def download_image(image): | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
image.save("output.png", "PNG") | |
return "output.png" | |
def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps): | |
image = edit_image["background"] | |
mask = edit_image["layers"][0] | |
if isinstance(result, np.ndarray): | |
result = Image.fromarray(result) | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
if isinstance(mask, np.ndarray): | |
mask = Image.fromarray(mask) | |
result.save("saved_result.png", "PNG") | |
image.save("saved_image.png", "PNG") | |
mask.save("saved_mask.png", "PNG") | |
details = { | |
"prompt": prompt, | |
"lora_model": lora_model, | |
"strength": strength, | |
"seed": seed, | |
"guidance_scale": guidance_scale, | |
"num_inference_steps": num_inference_steps | |
} | |
with open("details.json", "w") as f: | |
json.dump(details, f) | |
# Create a ZIP file | |
with zipfile.ZipFile("output.zip", "w") as zipf: | |
zipf.write("saved_result.png") | |
zipf.write("saved_image.png") | |
zipf.write("saved_mask.png") | |
zipf.write("details.json") | |
return "output.zip" | |
def set_image_as_inpaint(image): | |
return image | |
# def generate_mask(image, click_x, click_y): | |
# text_prompt = "face" | |
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24) | |
# return mask | |
examples = [ | |
"photography of a young woman, accent lighting, (front view:1.4), " | |
# "a tiny astronaut hatching from an egg on the moon", | |
# "a cat holding a sign that says hello world", | |
# "an anime illustration of a wiener schnitzel", | |
] | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f"""# FLUX.1 [dev] | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
edit_image = gr.ImageEditor( | |
label='Upload and draw mask for inpainting', | |
type='pil', | |
sources=["upload", "webcam"], | |
image_mode='RGB', | |
layers=False, | |
brush=gr.Brush(colors=["#FFFFFF"]), | |
# height=600 | |
) | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
lora_model = gr.Dropdown( | |
label="Select LoRA Model", | |
choices=list(lora_models.keys()), | |
value="None", | |
) | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=30, | |
step=0.5, | |
value=50, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
with gr.Row(): | |
strength = gr.Slider( | |
label="Strength", | |
minimum=0, | |
maximum=1, | |
step=0.01, | |
value=0.85, | |
) | |
# width = gr.Slider( | |
# label="width", | |
# minimum=512, | |
# maximum=3072, | |
# step=1, | |
# value=1024, | |
# ) | |
# height = gr.Slider( | |
# label="height", | |
# minimum=512, | |
# maximum=3072, | |
# step=1, | |
# value=1024, | |
# ) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn = infer, | |
inputs = [edit_image, prompt, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps], | |
outputs = [result, seed] | |
) | |
download_button = gr.Button("Download Image as PNG") | |
set_inpaint_button = gr.Button("Set Image as Inpaint") | |
save_button = gr.Button("Save Details") | |
download_button.click( | |
fn=download_image, | |
inputs=[result], | |
outputs=gr.File(label="Download Image") | |
) | |
set_inpaint_button.click( | |
fn=set_image_as_inpaint, | |
inputs=[result], | |
outputs=[edit_image] | |
) | |
save_button.click( | |
fn=save_details, | |
inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps], | |
outputs=gr.File(label="Download/Save Status") | |
) | |
# edit_image.select( | |
# fn=generate_mask, | |
# inputs=[edit_image, gr.Number(), gr.Number()], | |
# outputs=[edit_image] | |
# ) | |
# demo.launch() | |
PASSWORD = os.getenv("GRADIO_PASSWORD") | |
USERNAME = os.getenv("GRADIO_USERNAME") | |
# Create an authentication object | |
def authenticate(username, password): | |
if username == USERNAME and password == PASSWORD: | |
return True | |
else: | |
return False | |
# Launch the app with authentication | |
demo.launch(debug=True, auth=authenticate) |