File size: 12,126 Bytes
e08bb94
863ffef
9f7372f
c9a1e1c
71f7331
1d4293f
71f7331
 
 
 
06e4d33
ac67229
71f7331
863ffef
c9a1e1c
863ffef
aaca362
c9a1e1c
 
 
863ffef
 
c9a1e1c
ac67229
 
 
863ffef
69d628b
71f7331
 
1d4293f
71f7331
 
 
 
 
 
 
aaca362
71f7331
 
 
674fa25
71f7331
1d4293f
863ffef
61dc46d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863ffef
 
61dc46d
 
 
ac67229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4293f
863ffef
 
 
 
71f7331
 
 
1d4293f
863ffef
0ef453d
b07c027
 
0ef453d
 
 
 
 
863ffef
c9a1e1c
 
863ffef
ac67229
 
 
 
 
 
863ffef
 
ac67229
 
863ffef
 
ac67229
863ffef
 
 
 
 
 
 
 
 
 
 
 
ead1aa9
71f7331
ead1aa9
863ffef
71f7331
61dc46d
fceb263
 
61dc46d
 
 
863ffef
2262b9a
 
 
 
 
06e4d33
 
 
 
 
2262b9a
06e4d33
 
 
 
 
 
 
 
 
863ffef
06e4d33
 
 
 
 
 
 
2262b9a
06e4d33
 
 
 
 
 
61dc46d
 
 
863ffef
 
 
 
69d628b
71f7331
863ffef
 
 
 
71f7331
aaca362
71f7331
c9a1e1c
 
 
 
 
9f7372f
c9a1e1c
71f7331
c9a1e1c
863ffef
69d628b
c9a1e1c
 
 
71f7331
aaca362
c9a1e1c
aaca362
71f7331
560576f
863ffef
c9a1e1c
aaca362
71f7331
863ffef
560576f
71f7331
863ffef
c9a1e1c
69d628b
71f7331
 
 
 
2c7a685
71f7331
c9a1e1c
71f7331
c9a1e1c
ff04599
c9a1e1c
863ffef
 
 
 
 
 
 
 
 
 
71f7331
25d8920
863ffef
aaca362
863ffef
aaca362
 
 
863ffef
aaca362
71f7331
aaca362
863ffef
aaca362
 
 
 
 
863ffef
06e4d33
863ffef
 
 
06e4d33
863ffef
 
 
25d8920
863ffef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71f7331
aaca362
 
863ffef
 
 
9f7372f
 
61dc46d
 
06e4d33
61dc46d
 
 
 
 
 
 
 
 
 
 
 
 
06e4d33
 
863ffef
c62387e
06e4d33
 
863ffef
 
 
 
 
 
 
63408d7
 
863ffef
63408d7
 
 
863ffef
63408d7
 
25d8920
863ffef
25d8920
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import spaces

import gradio as gr
import numpy as np
import os
import random
import json
from PIL import Image
import torch
from torchvision import transforms
import zipfile
import cv2  # Added OpenCV import

from diffusers import FluxFillPipeline, AutoencoderKL
from PIL import Image
# from samgeo.text_sam import LangSAM

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# sam = LangSAM(model_type="sam2-hiera-large").to(device)

# Initialize vae model for 16-step encoding
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")

pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")

with open("lora_models.json", "r") as f:
    lora_models = json.load(f)

def download_model(model_name, model_path):
    print(f"Downloading model: {model_name} from {model_path}")
    try:
        pipe.load_lora_weights(model_path)
        print(f"Successfully downloaded model: {model_name}")
    except Exception as e:
        print(f"Failed to download model: {model_name}. Error: {e}")

# Iterate through the models and download each one
for model_name, model_path in lora_models.items():
    download_model(model_name, model_path)

lora_models["None"] = None

def calculate_optimal_dimensions(image: Image.Image):
    # Extract the original dimensions
    original_width, original_height = image.size

    # Set constants
    MIN_ASPECT_RATIO = 9 / 16
    MAX_ASPECT_RATIO = 16 / 9
    FIXED_DIMENSION = 1024

    # Calculate the aspect ratio of the original image
    original_aspect_ratio = original_width / original_height

    # Determine which dimension to fix
    if original_aspect_ratio > 1:  # Wider than tall
        width = FIXED_DIMENSION
        height = round(FIXED_DIMENSION / original_aspect_ratio)
    else:  # Taller than wide
        height = FIXED_DIMENSION
        width = round(FIXED_DIMENSION * original_aspect_ratio)

    # Ensure dimensions are multiples of 8
    width = (width // 8) * 8
    height = (height // 8) * 8

    # Enforce aspect ratio limits
    calculated_aspect_ratio = width / height
    if calculated_aspect_ratio > MAX_ASPECT_RATIO:
        width = (height * MAX_ASPECT_RATIO // 8) * 8
    elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
        height = (width / MIN_ASPECT_RATIO // 8) * 8

    # Ensure width and height remain above the minimum dimensions
    width = max(width, 576) if width == FIXED_DIMENSION else width
    height = max(height, 576) if height == FIXED_DIMENSION else height

    return width, height

def process_unmasked_area(image, mask, blur_strength=25):
    """
    Process the unmasked portion of the image to remove context while preserving the masked area
    
    Args:
        image: PIL Image - the original input image
        mask: PIL Image - the mask with white (255) indicating the area to preserve
        blur_strength: int - strength of blur to apply to unmasked regions
    
    Returns:
        PIL Image with unmasked regions processed
    """
    # Convert PIL images to numpy arrays for OpenCV processing
    img_np = np.array(image)
    mask_np = np.array(mask)
    
    # Ensure mask is binary (0 and 255)
    _, mask_binary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
    
    # Create inverted mask (255 in areas we want to process)
    mask_inv = cv2.bitwise_not(mask_binary)
    
    # Apply strong blur to remove context in unmasked areas
    blurred = cv2.GaussianBlur(img_np, (blur_strength, blur_strength), 0)
    
    # Create the processed image
    # Keep original pixels where mask is white (255)
    # Use blurred pixels where mask is black (0)
    processed_np = np.where(mask_binary[:, :, None] == 255, img_np, blurred)
    
    # Convert back to PIL image
    processed_image = Image.fromarray(processed_np)
    
    return processed_image

def vae_encode_16steps(image):
    """
    Encode image using the VAE with 16 steps
    
    Args:
        image: PIL Image to encode
    
    Returns:
        Encoded latent representation
    """
    # Convert PIL image to tensor
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    
    image_tensor = transform(image).unsqueeze(0).to("cuda")
    
    # Encode with 16 steps
    with torch.no_grad():
        latent = vae.encode(image_tensor, num_inference_steps=16).latent_dist.sample()
        latent = latent * vae.config.scaling_factor
    
    return latent

@spaces.GPU(durations=300)
def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    # pipe.enable_xformers_memory_efficient_attention()
    gr.Info("Infering")

    if lora_model != "None":
        pipe.load_lora_weights(lora_models[lora_model])
        pipe.enable_lora()

    gr.Info("starting checks")

    image = edit_images["background"]
    mask = edit_images["layers"][0]

    if not image:
        gr.Info("Please upload an image.")
        return None, None

    width, height = calculate_optimal_dimensions(image)
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    # Process the unmasked portion to remove context
    processed_image = process_unmasked_area(image, mask)
    
    # Create latent encodings using VAE with 16 steps
    image_latent = vae_encode_16steps(processed_image)
    
    gr.Info("generating image")
    image = pipe(
        # Use the encoded image latent
        mask_image_latent=image_latent,
        prompt=prompt,
        prompt_2=prompt,
        image=processed_image,
        mask_image=mask,
        height=height,
        width=width,
        guidance_scale=guidance_scale,
        # strength=strength,
        num_inference_steps=num_inference_steps,
        generator=torch.Generator(device='cuda').manual_seed(seed),
        # generator=torch.Generator().manual_seed(seed),
        # lora_scale=0.75 // not supported in this version
    ).images[0]

    output_image_jpg = image.convert("RGB")
    output_image_jpg.save("output.jpg", "JPEG")

    return output_image_jpg, seed
    # return image, seed

def download_image(image):
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    image.save("output.png", "PNG")
    return "output.png"

def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps):
    image = edit_image["background"]
    mask = edit_image["layers"][0]

    if isinstance(result, np.ndarray):
        result = Image.fromarray(result)
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    if isinstance(mask, np.ndarray):
        mask = Image.fromarray(mask)

    result.save("saved_result.png", "PNG")
    image.save("saved_image.png", "PNG")
    mask.save("saved_mask.png", "PNG")

    details = {
        "prompt": prompt,
        "lora_model": lora_model,
        "strength": strength,
        "seed": seed,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps
    }

    with open("details.json", "w") as f:
        json.dump(details, f)

    # Create a ZIP file
    with zipfile.ZipFile("output.zip", "w") as zipf:
        zipf.write("saved_result.png")
        zipf.write("saved_image.png")
        zipf.write("saved_mask.png")
        zipf.write("details.json")

    return "output.zip"

def set_image_as_inpaint(image):
    return image

# def generate_mask(image, click_x, click_y):
#     text_prompt = "face"
#     mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
#     return mask

examples = [
    "photography of a young woman,  accent lighting,  (front view:1.4),  "
    # "a tiny astronaut hatching from an egg on the moon",
    # "a cat holding a sign that says hello world",
    # "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 1000px;
}
"""

with gr.Blocks(css=css) as demo:

    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev]
        """)
        with gr.Row():
            with gr.Column():
                edit_image = gr.ImageEditor(
                    label='Upload and draw mask for inpainting',
                    type='pil',
                    sources=["upload", "webcam"],
                    image_mode='RGB',
                    layers=False,
                    brush=gr.Brush(colors=["#FFFFFF"]),
                    # height=600
                )
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=2,
                    placeholder="Enter your prompt",
                    container=False,
                )

                lora_model = gr.Dropdown(
                    label="Select LoRA Model",
                    choices=list(lora_models.keys()),
                    value="None",
                )

                run_button = gr.Button("Run")

            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=30,
                    step=0.5,
                    value=50,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

            with gr.Row():

                strength = gr.Slider(
                    label="Strength",
                    minimum=0,
                    maximum=1,
                    step=0.01,
                    value=0.85,
                )

            #     width = gr.Slider(
            #         label="width",
            #         minimum=512,
            #         maximum=3072,
            #         step=1,
            #         value=1024,
            #     )

            #     height = gr.Slider(
            #         label="height",
            #         minimum=512,
            #         maximum=3072,
            #         step=1,
            #         value=1024,
            #     )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [edit_image, prompt, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps],
        outputs = [result, seed]
    )

    download_button = gr.Button("Download Image as PNG")
    set_inpaint_button = gr.Button("Set Image as Inpaint")
    save_button = gr.Button("Save Details")

    download_button.click(
            fn=download_image,
            inputs=[result],
            outputs=gr.File(label="Download Image")
        )

    set_inpaint_button.click(
            fn=set_image_as_inpaint,
            inputs=[result],
            outputs=[edit_image]
    )

    save_button.click(
            fn=save_details,
            inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps],
            outputs=gr.File(label="Download/Save Status")
    )

    # edit_image.select(
    #     fn=generate_mask,
    #     inputs=[edit_image, gr.Number(), gr.Number()],
    #     outputs=[edit_image]
    # )

# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
    if username == USERNAME and password == PASSWORD:
        return True

    else:
        return False
# Launch the app with authentication

demo.launch(debug=True, auth=authenticate)