Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,126 Bytes
e08bb94 863ffef 9f7372f c9a1e1c 71f7331 1d4293f 71f7331 06e4d33 ac67229 71f7331 863ffef c9a1e1c 863ffef aaca362 c9a1e1c 863ffef c9a1e1c ac67229 863ffef 69d628b 71f7331 1d4293f 71f7331 aaca362 71f7331 674fa25 71f7331 1d4293f 863ffef 61dc46d 863ffef 61dc46d ac67229 1d4293f 863ffef 71f7331 1d4293f 863ffef 0ef453d b07c027 0ef453d 863ffef c9a1e1c 863ffef ac67229 863ffef ac67229 863ffef ac67229 863ffef ead1aa9 71f7331 ead1aa9 863ffef 71f7331 61dc46d fceb263 61dc46d 863ffef 2262b9a 06e4d33 2262b9a 06e4d33 863ffef 06e4d33 2262b9a 06e4d33 61dc46d 863ffef 69d628b 71f7331 863ffef 71f7331 aaca362 71f7331 c9a1e1c 9f7372f c9a1e1c 71f7331 c9a1e1c 863ffef 69d628b c9a1e1c 71f7331 aaca362 c9a1e1c aaca362 71f7331 560576f 863ffef c9a1e1c aaca362 71f7331 863ffef 560576f 71f7331 863ffef c9a1e1c 69d628b 71f7331 2c7a685 71f7331 c9a1e1c 71f7331 c9a1e1c ff04599 c9a1e1c 863ffef 71f7331 25d8920 863ffef aaca362 863ffef aaca362 863ffef aaca362 71f7331 aaca362 863ffef aaca362 863ffef 06e4d33 863ffef 06e4d33 863ffef 25d8920 863ffef 71f7331 aaca362 863ffef 9f7372f 61dc46d 06e4d33 61dc46d 06e4d33 863ffef c62387e 06e4d33 863ffef 63408d7 863ffef 63408d7 863ffef 63408d7 25d8920 863ffef 25d8920 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import spaces
import gradio as gr
import numpy as np
import os
import random
import json
from PIL import Image
import torch
from torchvision import transforms
import zipfile
import cv2 # Added OpenCV import
from diffusers import FluxFillPipeline, AutoencoderKL
from PIL import Image
# from samgeo.text_sam import LangSAM
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# sam = LangSAM(model_type="sam2-hiera-large").to(device)
# Initialize vae model for 16-step encoding
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
with open("lora_models.json", "r") as f:
lora_models = json.load(f)
def download_model(model_name, model_path):
print(f"Downloading model: {model_name} from {model_path}")
try:
pipe.load_lora_weights(model_path)
print(f"Successfully downloaded model: {model_name}")
except Exception as e:
print(f"Failed to download model: {model_name}. Error: {e}")
# Iterate through the models and download each one
for model_name, model_path in lora_models.items():
download_model(model_name, model_path)
lora_models["None"] = None
def calculate_optimal_dimensions(image: Image.Image):
# Extract the original dimensions
original_width, original_height = image.size
# Set constants
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
# Calculate the aspect ratio of the original image
original_aspect_ratio = original_width / original_height
# Determine which dimension to fix
if original_aspect_ratio > 1: # Wider than tall
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else: # Taller than wide
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
# Ensure dimensions are multiples of 8
width = (width // 8) * 8
height = (height // 8) * 8
# Enforce aspect ratio limits
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
# Ensure width and height remain above the minimum dimensions
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height
def process_unmasked_area(image, mask, blur_strength=25):
"""
Process the unmasked portion of the image to remove context while preserving the masked area
Args:
image: PIL Image - the original input image
mask: PIL Image - the mask with white (255) indicating the area to preserve
blur_strength: int - strength of blur to apply to unmasked regions
Returns:
PIL Image with unmasked regions processed
"""
# Convert PIL images to numpy arrays for OpenCV processing
img_np = np.array(image)
mask_np = np.array(mask)
# Ensure mask is binary (0 and 255)
_, mask_binary = cv2.threshold(mask_np, 127, 255, cv2.THRESH_BINARY)
# Create inverted mask (255 in areas we want to process)
mask_inv = cv2.bitwise_not(mask_binary)
# Apply strong blur to remove context in unmasked areas
blurred = cv2.GaussianBlur(img_np, (blur_strength, blur_strength), 0)
# Create the processed image
# Keep original pixels where mask is white (255)
# Use blurred pixels where mask is black (0)
processed_np = np.where(mask_binary[:, :, None] == 255, img_np, blurred)
# Convert back to PIL image
processed_image = Image.fromarray(processed_np)
return processed_image
def vae_encode_16steps(image):
"""
Encode image using the VAE with 16 steps
Args:
image: PIL Image to encode
Returns:
Encoded latent representation
"""
# Convert PIL image to tensor
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image_tensor = transform(image).unsqueeze(0).to("cuda")
# Encode with 16 steps
with torch.no_grad():
latent = vae.encode(image_tensor, num_inference_steps=16).latent_dist.sample()
latent = latent * vae.config.scaling_factor
return latent
@spaces.GPU(durations=300)
def infer(edit_images, prompt, lora_model, strength, seed=42, randomize_seed=False, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
# pipe.enable_xformers_memory_efficient_attention()
gr.Info("Infering")
if lora_model != "None":
pipe.load_lora_weights(lora_models[lora_model])
pipe.enable_lora()
gr.Info("starting checks")
image = edit_images["background"]
mask = edit_images["layers"][0]
if not image:
gr.Info("Please upload an image.")
return None, None
width, height = calculate_optimal_dimensions(image)
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Process the unmasked portion to remove context
processed_image = process_unmasked_area(image, mask)
# Create latent encodings using VAE with 16 steps
image_latent = vae_encode_16steps(processed_image)
gr.Info("generating image")
image = pipe(
# Use the encoded image latent
mask_image_latent=image_latent,
prompt=prompt,
prompt_2=prompt,
image=processed_image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
# strength=strength,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
# generator=torch.Generator().manual_seed(seed),
# lora_scale=0.75 // not supported in this version
).images[0]
output_image_jpg = image.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
# return image, seed
def download_image(image):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image.save("output.png", "PNG")
return "output.png"
def save_details(result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps):
image = edit_image["background"]
mask = edit_image["layers"][0]
if isinstance(result, np.ndarray):
result = Image.fromarray(result)
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
if isinstance(mask, np.ndarray):
mask = Image.fromarray(mask)
result.save("saved_result.png", "PNG")
image.save("saved_image.png", "PNG")
mask.save("saved_mask.png", "PNG")
details = {
"prompt": prompt,
"lora_model": lora_model,
"strength": strength,
"seed": seed,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps
}
with open("details.json", "w") as f:
json.dump(details, f)
# Create a ZIP file
with zipfile.ZipFile("output.zip", "w") as zipf:
zipf.write("saved_result.png")
zipf.write("saved_image.png")
zipf.write("saved_mask.png")
zipf.write("details.json")
return "output.zip"
def set_image_as_inpaint(image):
return image
# def generate_mask(image, click_x, click_y):
# text_prompt = "face"
# mask = sam.predict(image, text_prompt, box_threshold=0.24, text_threshold=0.24)
# return mask
examples = [
"photography of a young woman, accent lighting, (front view:1.4), "
# "a tiny astronaut hatching from an egg on the moon",
# "a cat holding a sign that says hello world",
# "an anime illustration of a wiener schnitzel",
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 [dev]
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"]),
# height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
container=False,
)
lora_model = gr.Dropdown(
label="Select LoRA Model",
choices=list(lora_models.keys()),
value="None",
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=30,
step=0.5,
value=50,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
# width = gr.Slider(
# label="width",
# minimum=512,
# maximum=3072,
# step=1,
# value=1024,
# )
# height = gr.Slider(
# label="height",
# minimum=512,
# maximum=3072,
# step=1,
# value=1024,
# )
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [edit_image, prompt, lora_model, strength, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs = [result, seed]
)
download_button = gr.Button("Download Image as PNG")
set_inpaint_button = gr.Button("Set Image as Inpaint")
save_button = gr.Button("Save Details")
download_button.click(
fn=download_image,
inputs=[result],
outputs=gr.File(label="Download Image")
)
set_inpaint_button.click(
fn=set_image_as_inpaint,
inputs=[result],
outputs=[edit_image]
)
save_button.click(
fn=save_details,
inputs=[result, edit_image, prompt, lora_model, strength, seed, guidance_scale, num_inference_steps],
outputs=gr.File(label="Download/Save Status")
)
# edit_image.select(
# fn=generate_mask,
# inputs=[edit_image, gr.Number(), gr.Number()],
# outputs=[edit_image]
# )
# demo.launch()
PASSWORD = os.getenv("GRADIO_PASSWORD")
USERNAME = os.getenv("GRADIO_USERNAME")
# Create an authentication object
def authenticate(username, password):
if username == USERNAME and password == PASSWORD:
return True
else:
return False
# Launch the app with authentication
demo.launch(debug=True, auth=authenticate) |