Spaces:
Runtime error
Runtime error
File size: 13,756 Bytes
a105ac5 1d4e95e a105ac5 1d4e95e a105ac5 1d4e95e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import torch
from transformers import T5EncoderModel,T5TokenizerFast
from diffusers import FluxTransformer2DModel
from torch import nn
from typing import List
from diffusers import FlowMatchEulerDiscreteScheduler
import copy
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
from math import pi
import inspect
from typing import Optional,Union,List
class StableAudioPositionalEmbedding(nn.Module):
"""Used for continuous time
Adapted from stable audio open.
"""
def __init__(self, dim: int):
super().__init__()
assert (dim % 2) == 0
half_dim = dim // 2
self.weights = nn.Parameter(torch.randn(half_dim))
def forward(self, times: torch.Tensor) -> torch.Tensor:
times = times[..., None]
freqs = times * self.weights[None] * 2 * pi
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
fouriered = torch.cat((times, fouriered), dim=-1)
return fouriered
class DurationEmbedder(nn.Module):
"""
A simple linear projection model to map numbers to a latent space.
Code is adapted from
https://github.com/Stability-AI/stable-audio-tools
Args:
number_embedding_dim (`int`):
Dimensionality of the number embeddings.
min_value (`int`):
The minimum value of the seconds number conditioning modules.
max_value (`int`):
The maximum value of the seconds number conditioning modules
internal_dim (`int`):
Dimensionality of the intermediate number hidden states.
"""
def __init__(
self,
number_embedding_dim,
min_value,
max_value,
internal_dim: Optional[int] = 256,
):
super().__init__()
self.time_positional_embedding = nn.Sequential(
StableAudioPositionalEmbedding(internal_dim),
nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim),
)
self.number_embedding_dim = number_embedding_dim
self.min_value = min_value
self.max_value = max_value
self.dtype = torch.float32
def forward(
self,
floats: torch.Tensor,
):
floats = floats.clamp(self.min_value, self.max_value)
normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value)
# Cast floats to same type as embedder
embedder_dtype = next(self.time_positional_embedding.parameters()).dtype
normalized_floats = normalized_floats.to(embedder_dtype)
embedding = self.time_positional_embedding(normalized_floats)
float_embeds = embedding.view(-1, 1, self.number_embedding_dim)
return float_embeds
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class Voxify(nn.Module):
def __init__(self,config,initialize_reference_model=False):
super().__init__()
self.num_layers = config.get('num_layers', 6)
self.num_single_layers = config.get('num_single_layers', 18)
self.in_channels = config.get('in_channels', 64)
self.attention_head_dim = config.get('attention_head_dim', 128)
self.joint_attention_dim = config.get('joint_attention_dim', 1024)
self.num_attention_heads = config.get('num_attention_heads', 8)
self.audio_seq_len = config.get('audio_seq_len', 645)
self.max_duration = config.get('max_duration', 30)
self.uncondition = config.get('uncondition', False)
self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large")
self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000)
self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler)
self.max_text_seq_len = 64
self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name)
self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name)
self.text_embedding_dim = self.text_encoder.config.d_model
self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU())
self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration)
self.transformer = FluxTransformer2DModel(
in_channels=self.in_channels,
num_layers=self.num_layers,
num_single_layers=self.num_single_layers,
attention_head_dim=self.attention_head_dim,
num_attention_heads=self.num_attention_heads,
joint_attention_dim=self.joint_attention_dim,
pooled_projection_dim=self.text_embedding_dim,
guidance_embeds=False)
self.beta_dpo = 2000 ## this is used for dpo training
def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32):
device = self.text_encoder.device
sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype)
schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device)
timesteps = timesteps.to(device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt"
)
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
with torch.no_grad():
prompt_embeds = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask
)[0]
prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# get unconditional embeddings for classifier free guidance
uncond_tokens = [""]
max_length = prompt_embeds.shape[1]
uncond_batch = self.tokenizer(
uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt",
)
uncond_input_ids = uncond_batch.input_ids.to(device)
uncond_attention_mask = uncond_batch.attention_mask.to(device)
with torch.no_grad():
negative_prompt_embeds = self.text_encoder(
input_ids=uncond_input_ids, attention_mask=uncond_attention_mask
)[0]
negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0)
uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0)
# For classifier free guidance, we need to do two forward passes.
# We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_mask = torch.cat([uncond_attention_mask, attention_mask])
boolean_prompt_mask = (prompt_mask == 1).to(device)
return prompt_embeds, boolean_prompt_mask
@torch.no_grad()
def encode_text(self, prompt):
device = self.text_encoder.device
batch = self.tokenizer(
prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt")
input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device)
encoder_hidden_states = self.text_encoder(
input_ids=input_ids, attention_mask=attention_mask)[0]
boolean_encoder_mask = (attention_mask == 1).to(device)
return encoder_hidden_states, boolean_encoder_mask
def encode_duration(self,duration):
return self.duration_emebdder(duration)
@torch.no_grad()
def inference_flow(self, prompt,
num_inference_steps=50,
timesteps=None,
guidance_scale=3,
duration=10,
disable_progress=False,
num_samples_per_prompt=1):
'''Only tested for single inference. Haven't test for batch inference'''
bsz = num_samples_per_prompt
device = self.transformer.device
scheduler = self.noise_scheduler
if not isinstance(prompt,list):
prompt = [prompt]
if not isinstance(duration,torch.Tensor):
duration = torch.tensor([duration],device=device)
classifier_free_guidance = guidance_scale > 1.0
duration_hidden_states = self.encode_duration(duration)
if classifier_free_guidance:
bsz = 2 * num_samples_per_prompt
encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt)
duration_hidden_states = duration_hidden_states.repeat(bsz,1,1)
else:
encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt)
mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states)
masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan')))
pooled = torch.nanmean(masked_data, dim=1)
pooled_projection = self.fc(pooled)
encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
timesteps, num_inference_steps = retrieve_timesteps(
scheduler,
num_inference_steps,
device,
timesteps,
sigmas
)
latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64)
weight_dtype = latents.dtype
progress_bar = tqdm(range(num_inference_steps), disable=disable_progress)
txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device)
audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device)
timesteps = timesteps.to(device)
latents = latents.to(device)
encoder_hidden_states = encoder_hidden_states.to(device)
for i, t in enumerate(timesteps):
latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents
noise_pred = self.transformer(
hidden_states=latents_input,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=torch.tensor([t/1000],device=device),
guidance = None,
pooled_projections=pooled_projection,
encoder_hidden_states=encoder_hidden_states,
txt_ids=txt_ids,
img_ids=audio_ids,
return_dict=False,
)[0]
if classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents |