Spaces:
Running
on
T4
Running
on
T4
import math | |
from abc import ABC | |
from math import prod | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from architecture.grl_common.ops import ( | |
bchw_to_bhwc, | |
bchw_to_blc, | |
blc_to_bchw, | |
blc_to_bhwc, | |
calculate_mask, | |
calculate_mask_all, | |
get_relative_coords_table_all, | |
get_relative_position_index_simple, | |
window_partition, | |
window_reverse, | |
) | |
from architecture.grl_common.swin_v1_block import Mlp | |
from timm.models.layers import DropPath | |
class CPB_MLP(nn.Sequential): | |
def __init__(self, in_channels, out_channels, channels=512): | |
m = [ | |
nn.Linear(in_channels, channels, bias=True), | |
nn.ReLU(inplace=True), | |
nn.Linear(channels, out_channels, bias=False), | |
] | |
super(CPB_MLP, self).__init__(*m) | |
class AffineTransformWindow(nn.Module): | |
r"""Affine transformation of the attention map. | |
The window is a square window. | |
Supports attention between different window sizes | |
""" | |
def __init__( | |
self, | |
num_heads, | |
input_resolution, | |
window_size, | |
pretrained_window_size=[0, 0], | |
shift_size=0, | |
anchor_window_down_factor=1, | |
args=None, | |
): | |
super(AffineTransformWindow, self).__init__() | |
# print("AffineTransformWindow", args) | |
self.num_heads = num_heads | |
self.input_resolution = input_resolution | |
self.window_size = window_size | |
self.pretrained_window_size = pretrained_window_size | |
self.shift_size = shift_size | |
self.anchor_window_down_factor = anchor_window_down_factor | |
self.use_buffer = args.use_buffer | |
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) | |
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) | |
# mlp to generate continuous relative position bias | |
self.cpb_mlp = CPB_MLP(2, num_heads) | |
if self.use_buffer: | |
table = get_relative_coords_table_all( | |
window_size, pretrained_window_size, anchor_window_down_factor | |
) | |
index = get_relative_position_index_simple( | |
window_size, anchor_window_down_factor | |
) | |
self.register_buffer("relative_coords_table", table) | |
self.register_buffer("relative_position_index", index) | |
if self.shift_size > 0: | |
attn_mask = calculate_mask( | |
input_resolution, self.window_size, self.shift_size | |
) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
def forward(self, attn, x_size): | |
B_, H, N, _ = attn.shape | |
device = attn.device | |
# logit scale | |
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() | |
# relative position bias | |
if self.use_buffer: | |
table = self.relative_coords_table | |
index = self.relative_position_index | |
else: | |
table = get_relative_coords_table_all( | |
self.window_size, | |
self.pretrained_window_size, | |
self.anchor_window_down_factor, | |
).to(device) | |
index = get_relative_position_index_simple( | |
self.window_size, self.anchor_window_down_factor | |
).to(device) | |
bias_table = self.cpb_mlp(table) # 2*Wh-1, 2*Ww-1, num_heads | |
bias_table = bias_table.view(-1, self.num_heads) | |
win_dim = prod(self.window_size) | |
bias = bias_table[index.view(-1)] | |
bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() | |
# nH, Wh*Ww, Wh*Ww | |
bias = 16 * torch.sigmoid(bias) | |
attn = attn + bias.unsqueeze(0) | |
# W-MSA/SW-MSA | |
if self.use_buffer: | |
mask = self.attn_mask | |
# during test and window shift, recalculate the mask | |
if self.input_resolution != x_size and self.shift_size > 0: | |
mask = calculate_mask(x_size, self.window_size, self.shift_size) | |
mask = mask.to(attn.device) | |
else: | |
if self.shift_size > 0: | |
mask = calculate_mask(x_size, self.window_size, self.shift_size) | |
mask = mask.to(attn.device) | |
else: | |
mask = None | |
# shift attention mask | |
if mask is not None: | |
nW = mask.shape[0] | |
mask = mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask | |
attn = attn.view(-1, self.num_heads, N, N) | |
return attn | |
class AffineTransformStripe(nn.Module): | |
r"""Affine transformation of the attention map. | |
The window is a stripe window. Supports attention between different window sizes | |
""" | |
def __init__( | |
self, | |
num_heads, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
pretrained_stripe_size=[0, 0], | |
anchor_window_down_factor=1, | |
window_to_anchor=True, | |
args=None, | |
): | |
super(AffineTransformStripe, self).__init__() | |
self.num_heads = num_heads | |
self.input_resolution = input_resolution | |
self.stripe_size = stripe_size | |
self.stripe_groups = stripe_groups | |
self.pretrained_stripe_size = pretrained_stripe_size | |
# TODO: be careful when determining the pretrained_stripe_size | |
self.stripe_shift = stripe_shift | |
stripe_size, shift_size = self._get_stripe_info(input_resolution) | |
self.anchor_window_down_factor = anchor_window_down_factor | |
self.window_to_anchor = window_to_anchor | |
self.use_buffer = args.use_buffer | |
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) | |
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) | |
# mlp to generate continuous relative position bias | |
self.cpb_mlp = CPB_MLP(2, num_heads) | |
if self.use_buffer: | |
table = get_relative_coords_table_all( | |
stripe_size, pretrained_stripe_size, anchor_window_down_factor | |
) | |
index = get_relative_position_index_simple( | |
stripe_size, anchor_window_down_factor, window_to_anchor | |
) | |
self.register_buffer("relative_coords_table", table) | |
self.register_buffer("relative_position_index", index) | |
if self.stripe_shift: | |
attn_mask = calculate_mask_all( | |
input_resolution, | |
stripe_size, | |
shift_size, | |
anchor_window_down_factor, | |
window_to_anchor, | |
) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
def forward(self, attn, x_size): | |
B_, H, N1, N2 = attn.shape | |
device = attn.device | |
# logit scale | |
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() | |
# relative position bias | |
stripe_size, shift_size = self._get_stripe_info(x_size) | |
fixed_stripe_size = ( | |
self.stripe_groups[0] is None and self.stripe_groups[1] is None | |
) | |
if not self.use_buffer or ( | |
self.use_buffer | |
and self.input_resolution != x_size | |
and not fixed_stripe_size | |
): | |
# during test and stripe size is not fixed. | |
pretrained_stripe_size = ( | |
self.pretrained_stripe_size | |
) # or stripe_size; Needs further pondering | |
table = get_relative_coords_table_all( | |
stripe_size, pretrained_stripe_size, self.anchor_window_down_factor | |
) | |
table = table.to(device) | |
index = get_relative_position_index_simple( | |
stripe_size, self.anchor_window_down_factor, self.window_to_anchor | |
).to(device) | |
else: | |
table = self.relative_coords_table | |
index = self.relative_position_index | |
# The same table size-> 1, Wh+AWh-1, Ww+AWw-1, 2 | |
# But different index size -> # Wh*Ww, AWh*AWw | |
# if N1 < N2: | |
# index = index.transpose(0, 1) | |
bias_table = self.cpb_mlp(table).view(-1, self.num_heads) | |
# if not self.training: | |
# print(bias_table.shape, index.max(), index.min()) | |
bias = bias_table[index.view(-1)] | |
bias = bias.view(N1, N2, -1).permute(2, 0, 1).contiguous() | |
# nH, Wh*Ww, Wh*Ww | |
bias = 16 * torch.sigmoid(bias) | |
# print(N1, N2, attn.shape, bias.unsqueeze(0).shape) | |
attn = attn + bias.unsqueeze(0) | |
# W-MSA/SW-MSA | |
if self.use_buffer: | |
mask = self.attn_mask | |
# during test and window shift, recalculate the mask | |
if self.input_resolution != x_size and self.stripe_shift > 0: | |
mask = calculate_mask_all( | |
x_size, | |
stripe_size, | |
shift_size, | |
self.anchor_window_down_factor, | |
self.window_to_anchor, | |
) | |
mask = mask.to(device) | |
else: | |
if self.stripe_shift > 0: | |
mask = calculate_mask_all( | |
x_size, | |
stripe_size, | |
shift_size, | |
self.anchor_window_down_factor, | |
self.window_to_anchor, | |
) | |
mask = mask.to(attn.device) | |
else: | |
mask = None | |
# shift attention mask | |
if mask is not None: | |
nW = mask.shape[0] | |
mask = mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(B_ // nW, nW, self.num_heads, N1, N2) + mask | |
attn = attn.view(-1, self.num_heads, N1, N2) | |
return attn | |
def _get_stripe_info(self, input_resolution): | |
stripe_size, shift_size = [], [] | |
for s, g, d in zip(self.stripe_size, self.stripe_groups, input_resolution): | |
if g is None: | |
stripe_size.append(s) | |
shift_size.append(s // 2 if self.stripe_shift else 0) | |
else: | |
stripe_size.append(d // g) | |
shift_size.append(0 if g == 1 else d // (g * 2)) | |
return stripe_size, shift_size | |
class Attention(ABC, nn.Module): | |
def __init__(self): | |
super(Attention, self).__init__() | |
def attn(self, q, k, v, attn_transform, x_size, reshape=True): | |
# cosine attention map | |
B_, _, H, head_dim = q.shape | |
if self.euclidean_dist: | |
attn = torch.norm(q.unsqueeze(-2) - k.unsqueeze(-3), dim=-1) | |
else: | |
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) | |
attn = attn_transform(attn, x_size) | |
# attention | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = attn @ v # B_, H, N1, head_dim | |
if reshape: | |
x = x.transpose(1, 2).reshape(B_, -1, H * head_dim) | |
# B_, N, C | |
return x | |
class WindowAttention(Attention): | |
r"""Window attention. QKV is the input to the forward method. | |
Args: | |
num_heads (int): Number of attention heads. | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. | |
""" | |
def __init__( | |
self, | |
input_resolution, | |
window_size, | |
num_heads, | |
window_shift=False, | |
attn_drop=0.0, | |
pretrained_window_size=[0, 0], | |
args=None, | |
): | |
super(WindowAttention, self).__init__() | |
self.input_resolution = input_resolution | |
self.window_size = window_size | |
self.pretrained_window_size = pretrained_window_size | |
self.num_heads = num_heads | |
self.shift_size = window_size[0] // 2 if window_shift else 0 | |
self.euclidean_dist = args.euclidean_dist | |
self.attn_transform = AffineTransformWindow( | |
num_heads, | |
input_resolution, | |
window_size, | |
pretrained_window_size, | |
self.shift_size, | |
args=args, | |
) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, qkv, x_size): | |
""" | |
Args: | |
qkv: input QKV features with shape of (B, L, 3C) | |
x_size: use x_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
H, W = x_size | |
B, L, C = qkv.shape | |
qkv = qkv.view(B, H, W, C) | |
# cyclic shift | |
if self.shift_size > 0: | |
qkv = torch.roll( | |
qkv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) | |
) | |
# partition windows | |
qkv = window_partition(qkv, self.window_size) # nW*B, wh, ww, C | |
qkv = qkv.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C | |
B_, N, _ = qkv.shape | |
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
# attention | |
x = self.attn(q, k, v, self.attn_transform, x_size) | |
# merge windows | |
x = x.view(-1, *self.window_size, C // 3) | |
x = window_reverse(x, self.window_size, x_size) # B, H, W, C/3 | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
x = x.view(B, L, C // 3) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"window_size={self.window_size}, shift_size={self.shift_size}, " | |
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" | |
) | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class StripeAttention(Attention): | |
r"""Stripe attention | |
Args: | |
stripe_size (tuple[int]): The height and width of the stripe. | |
num_heads (int): Number of attention heads. | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. | |
""" | |
def __init__( | |
self, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
num_heads, | |
attn_drop=0.0, | |
pretrained_stripe_size=[0, 0], | |
args=None, | |
): | |
super(StripeAttention, self).__init__() | |
self.input_resolution = input_resolution | |
self.stripe_size = stripe_size # Wh, Ww | |
self.stripe_groups = stripe_groups | |
self.stripe_shift = stripe_shift | |
self.num_heads = num_heads | |
self.pretrained_stripe_size = pretrained_stripe_size | |
self.euclidean_dist = args.euclidean_dist | |
self.attn_transform = AffineTransformStripe( | |
num_heads, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
pretrained_stripe_size, | |
anchor_window_down_factor=1, | |
args=args, | |
) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, qkv, x_size): | |
""" | |
Args: | |
x: input features with shape of (B, L, C) | |
stripe_size: use stripe_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
H, W = x_size | |
B, L, C = qkv.shape | |
qkv = qkv.view(B, H, W, C) | |
running_stripe_size, running_shift_size = self.attn_transform._get_stripe_info( | |
x_size | |
) | |
# cyclic shift | |
if self.stripe_shift: | |
qkv = torch.roll( | |
qkv, | |
shifts=(-running_shift_size[0], -running_shift_size[1]), | |
dims=(1, 2), | |
) | |
# partition windows | |
qkv = window_partition(qkv, running_stripe_size) # nW*B, wh, ww, C | |
qkv = qkv.view(-1, prod(running_stripe_size), C) # nW*B, wh*ww, C | |
B_, N, _ = qkv.shape | |
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
# attention | |
x = self.attn(q, k, v, self.attn_transform, x_size) | |
# merge windows | |
x = x.view(-1, *running_stripe_size, C // 3) | |
x = window_reverse(x, running_stripe_size, x_size) # B H W C/3 | |
# reverse the shift | |
if self.stripe_shift: | |
x = torch.roll(x, shifts=running_shift_size, dims=(1, 2)) | |
x = x.view(B, L, C // 3) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " | |
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}" | |
) | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class AnchorStripeAttention(Attention): | |
r"""Stripe attention | |
Args: | |
stripe_size (tuple[int]): The height and width of the stripe. | |
num_heads (int): Number of attention heads. | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. | |
""" | |
def __init__( | |
self, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
num_heads, | |
attn_drop=0.0, | |
pretrained_stripe_size=[0, 0], | |
anchor_window_down_factor=1, | |
args=None, | |
): | |
super(AnchorStripeAttention, self).__init__() | |
self.input_resolution = input_resolution | |
self.stripe_size = stripe_size # Wh, Ww | |
self.stripe_groups = stripe_groups | |
self.stripe_shift = stripe_shift | |
self.num_heads = num_heads | |
self.pretrained_stripe_size = pretrained_stripe_size | |
self.anchor_window_down_factor = anchor_window_down_factor | |
self.euclidean_dist = args.euclidean_dist | |
self.attn_transform1 = AffineTransformStripe( | |
num_heads, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
pretrained_stripe_size, | |
anchor_window_down_factor, | |
window_to_anchor=False, | |
args=args, | |
) | |
self.attn_transform2 = AffineTransformStripe( | |
num_heads, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
pretrained_stripe_size, | |
anchor_window_down_factor, | |
window_to_anchor=True, | |
args=args, | |
) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, qkv, anchor, x_size): | |
""" | |
Args: | |
qkv: input features with shape of (B, L, C) | |
anchor: | |
x_size: use stripe_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
H, W = x_size | |
B, L, C = qkv.shape | |
qkv = qkv.view(B, H, W, C) | |
stripe_size, shift_size = self.attn_transform1._get_stripe_info(x_size) | |
anchor_stripe_size = [s // self.anchor_window_down_factor for s in stripe_size] | |
anchor_shift_size = [s // self.anchor_window_down_factor for s in shift_size] | |
# cyclic shift | |
if self.stripe_shift: | |
qkv = torch.roll(qkv, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) | |
anchor = torch.roll( | |
anchor, | |
shifts=(-anchor_shift_size[0], -anchor_shift_size[1]), | |
dims=(1, 2), | |
) | |
# partition windows | |
qkv = window_partition(qkv, stripe_size) # nW*B, wh, ww, C | |
qkv = qkv.view(-1, prod(stripe_size), C) # nW*B, wh*ww, C | |
anchor = window_partition(anchor, anchor_stripe_size) | |
anchor = anchor.view(-1, prod(anchor_stripe_size), C // 3) | |
B_, N1, _ = qkv.shape | |
N2 = anchor.shape[1] | |
qkv = qkv.reshape(B_, N1, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
anchor = anchor.reshape(B_, N2, self.num_heads, -1).permute(0, 2, 1, 3) | |
# attention | |
x = self.attn(anchor, k, v, self.attn_transform1, x_size, False) | |
x = self.attn(q, anchor, x, self.attn_transform2, x_size) | |
# merge windows | |
x = x.view(B_, *stripe_size, C // 3) | |
x = window_reverse(x, stripe_size, x_size) # B H' W' C | |
# reverse the shift | |
if self.stripe_shift: | |
x = torch.roll(x, shifts=shift_size, dims=(1, 2)) | |
x = x.view(B, H * W, C // 3) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " | |
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}, anchor_window_down_factor={self.anchor_window_down_factor}" | |
) | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class SeparableConv(nn.Sequential): | |
def __init__(self, in_channels, out_channels, kernel_size, stride, bias, args): | |
m = [ | |
nn.Conv2d( | |
in_channels, | |
in_channels, | |
kernel_size, | |
stride, | |
kernel_size // 2, | |
groups=in_channels, | |
bias=bias, | |
) | |
] | |
if args.separable_conv_act: | |
m.append(nn.GELU()) | |
m.append(nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=bias)) | |
super(SeparableConv, self).__init__(*m) | |
class QKVProjection(nn.Module): | |
def __init__(self, dim, qkv_bias, proj_type, args): | |
super(QKVProjection, self).__init__() | |
self.proj_type = proj_type | |
if proj_type == "linear": | |
self.body = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
else: | |
self.body = SeparableConv(dim, dim * 3, 3, 1, qkv_bias, args) | |
def forward(self, x, x_size): | |
if self.proj_type == "separable_conv": | |
x = blc_to_bchw(x, x_size) | |
x = self.body(x) | |
if self.proj_type == "separable_conv": | |
x = bchw_to_blc(x) | |
return x | |
class PatchMerging(nn.Module): | |
r"""Patch Merging Layer. | |
Args: | |
dim (int): Number of input channels. | |
""" | |
def __init__(self, in_dim, out_dim): | |
super().__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.reduction = nn.Linear(4 * in_dim, out_dim, bias=False) | |
def forward(self, x, x_size): | |
""" | |
x: B, H*W, C | |
""" | |
H, W = x_size | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
x = x.view(B, H, W, C) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.reduction(x) | |
return x | |
class AnchorLinear(nn.Module): | |
r"""Linear anchor projection layer | |
Args: | |
dim (int): Number of input channels. | |
""" | |
def __init__(self, in_channels, out_channels, down_factor, pooling_mode, bias): | |
super().__init__() | |
self.down_factor = down_factor | |
if pooling_mode == "maxpool": | |
self.pooling = nn.MaxPool2d(down_factor, down_factor) | |
elif pooling_mode == "avgpool": | |
self.pooling = nn.AvgPool2d(down_factor, down_factor) | |
self.reduction = nn.Linear(in_channels, out_channels, bias=bias) | |
def forward(self, x, x_size): | |
""" | |
x: B, H*W, C | |
""" | |
x = blc_to_bchw(x, x_size) | |
x = bchw_to_blc(self.pooling(x)) | |
x = blc_to_bhwc(self.reduction(x), [s // self.down_factor for s in x_size]) | |
return x | |
class AnchorProjection(nn.Module): | |
def __init__(self, dim, proj_type, one_stage, anchor_window_down_factor, args): | |
super(AnchorProjection, self).__init__() | |
self.proj_type = proj_type | |
self.body = nn.ModuleList([]) | |
if one_stage: | |
if proj_type == "patchmerging": | |
m = PatchMerging(dim, dim // 2) | |
elif proj_type == "conv2d": | |
kernel_size = anchor_window_down_factor + 1 | |
stride = anchor_window_down_factor | |
padding = kernel_size // 2 | |
m = nn.Conv2d(dim, dim // 2, kernel_size, stride, padding) | |
elif proj_type == "separable_conv": | |
kernel_size = anchor_window_down_factor + 1 | |
stride = anchor_window_down_factor | |
m = SeparableConv(dim, dim // 2, kernel_size, stride, True, args) | |
elif proj_type.find("pool") >= 0: | |
m = AnchorLinear( | |
dim, dim // 2, anchor_window_down_factor, proj_type, True | |
) | |
self.body.append(m) | |
else: | |
for i in range(int(math.log2(anchor_window_down_factor))): | |
cin = dim if i == 0 else dim // 2 | |
if proj_type == "patchmerging": | |
m = PatchMerging(cin, dim // 2) | |
elif proj_type == "conv2d": | |
m = nn.Conv2d(cin, dim // 2, 3, 2, 1) | |
elif proj_type == "separable_conv": | |
m = SeparableConv(cin, dim // 2, 3, 2, True, args) | |
self.body.append(m) | |
def forward(self, x, x_size): | |
if self.proj_type.find("conv") >= 0: | |
x = blc_to_bchw(x, x_size) | |
for m in self.body: | |
x = m(x) | |
x = bchw_to_bhwc(x) | |
elif self.proj_type.find("pool") >= 0: | |
for m in self.body: | |
x = m(x, x_size) | |
else: | |
for i, m in enumerate(self.body): | |
x = m(x, [s // 2**i for s in x_size]) | |
x = blc_to_bhwc(x, [s // 2 ** (i + 1) for s in x_size]) | |
return x | |
class MixedAttention(nn.Module): | |
r"""Mixed window attention and stripe attention | |
Args: | |
dim (int): Number of input channels. | |
stripe_size (tuple[int]): The height and width of the stripe. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads_w, | |
num_heads_s, | |
window_size, | |
window_shift, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
qkv_bias=True, | |
qkv_proj_type="linear", | |
anchor_proj_type="separable_conv", | |
anchor_one_stage=True, | |
anchor_window_down_factor=1, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
pretrained_window_size=[0, 0], | |
pretrained_stripe_size=[0, 0], | |
args=None, | |
): | |
super(MixedAttention, self).__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.use_anchor = anchor_window_down_factor > 1 | |
self.args = args | |
# print(args) | |
self.qkv = QKVProjection(dim, qkv_bias, qkv_proj_type, args) | |
if self.use_anchor: | |
# anchor is only used for stripe attention | |
self.anchor = AnchorProjection( | |
dim, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, args | |
) | |
self.window_attn = WindowAttention( | |
input_resolution, | |
window_size, | |
num_heads_w, | |
window_shift, | |
attn_drop, | |
pretrained_window_size, | |
args, | |
) | |
if self.args.double_window: | |
self.stripe_attn = WindowAttention( | |
input_resolution, | |
window_size, | |
num_heads_w, | |
window_shift, | |
attn_drop, | |
pretrained_window_size, | |
args, | |
) | |
else: | |
if self.use_anchor: | |
self.stripe_attn = AnchorStripeAttention( | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
num_heads_s, | |
attn_drop, | |
pretrained_stripe_size, | |
anchor_window_down_factor, | |
args, | |
) | |
else: | |
if self.args.stripe_square: | |
self.stripe_attn = StripeAttention( | |
input_resolution, | |
window_size, | |
[None, None], | |
window_shift, | |
num_heads_s, | |
attn_drop, | |
pretrained_stripe_size, | |
args, | |
) | |
else: | |
self.stripe_attn = StripeAttention( | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
num_heads_s, | |
attn_drop, | |
pretrained_stripe_size, | |
args, | |
) | |
if self.args.out_proj_type == "linear": | |
self.proj = nn.Linear(dim, dim) | |
else: | |
self.proj = nn.Conv2d(dim, dim, 3, 1, 1) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, x_size): | |
""" | |
Args: | |
x: input features with shape of (B, L, C) | |
stripe_size: use stripe_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
B, L, C = x.shape | |
# qkv projection | |
qkv = self.qkv(x, x_size) | |
qkv_window, qkv_stripe = torch.split(qkv, C * 3 // 2, dim=-1) | |
# anchor projection | |
if self.use_anchor: | |
anchor = self.anchor(x, x_size) | |
# attention | |
x_window = self.window_attn(qkv_window, x_size) | |
if self.use_anchor: | |
x_stripe = self.stripe_attn(qkv_stripe, anchor, x_size) | |
else: | |
x_stripe = self.stripe_attn(qkv_stripe, x_size) | |
x = torch.cat([x_window, x_stripe], dim=-1) | |
# output projection | |
if self.args.out_proj_type == "linear": | |
x = self.proj(x) | |
else: | |
x = blc_to_bchw(x, x_size) | |
x = bchw_to_blc(self.proj(x)) | |
x = self.proj_drop(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}" | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class ChannelAttention(nn.Module): | |
"""Channel attention used in RCAN. | |
Args: | |
num_feat (int): Channel number of intermediate features. | |
reduction (int): Channel reduction factor. Default: 16. | |
""" | |
def __init__(self, num_feat, reduction=16): | |
super(ChannelAttention, self).__init__() | |
self.attention = nn.Sequential( | |
nn.AdaptiveAvgPool2d(1), | |
nn.Conv2d(num_feat, num_feat // reduction, 1, padding=0), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(num_feat // reduction, num_feat, 1, padding=0), | |
nn.Sigmoid(), | |
) | |
def forward(self, x): | |
y = self.attention(x) | |
return x * y | |
class CAB(nn.Module): | |
def __init__(self, num_feat, compress_ratio=4, reduction=18): | |
super(CAB, self).__init__() | |
self.cab = nn.Sequential( | |
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), | |
nn.GELU(), | |
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), | |
ChannelAttention(num_feat, reduction), | |
) | |
def forward(self, x, x_size): | |
x = self.cab(blc_to_bchw(x, x_size).contiguous()) | |
return bchw_to_blc(x) | |
class MixAttnTransformerBlock(nn.Module): | |
r"""Mix attention transformer block with shared QKV projection and output projection for mixed attention modules. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
pretrained_stripe_size (int): Window size in pre-training. | |
attn_type (str, optional): Attention type. Default: cwhv. | |
c: residual blocks | |
w: window attention | |
h: horizontal stripe attention | |
v: vertical stripe attention | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads_w, | |
num_heads_s, | |
window_size=7, | |
window_shift=False, | |
stripe_size=[8, 8], | |
stripe_groups=[None, None], | |
stripe_shift=False, | |
stripe_type="H", | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qkv_proj_type="linear", | |
anchor_proj_type="separable_conv", | |
anchor_one_stage=True, | |
anchor_window_down_factor=1, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
pretrained_window_size=[0, 0], | |
pretrained_stripe_size=[0, 0], | |
res_scale=1.0, | |
args=None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads_w = num_heads_w | |
self.num_heads_s = num_heads_s | |
self.window_size = window_size | |
self.window_shift = window_shift | |
self.stripe_shift = stripe_shift | |
self.stripe_type = stripe_type | |
self.args = args | |
if self.stripe_type == "W": | |
self.stripe_size = stripe_size[::-1] | |
self.stripe_groups = stripe_groups[::-1] | |
else: | |
self.stripe_size = stripe_size | |
self.stripe_groups = stripe_groups | |
self.mlp_ratio = mlp_ratio | |
self.res_scale = res_scale | |
self.attn = MixedAttention( | |
dim, | |
input_resolution, | |
num_heads_w, | |
num_heads_s, | |
window_size, | |
window_shift, | |
self.stripe_size, | |
self.stripe_groups, | |
stripe_shift, | |
qkv_bias, | |
qkv_proj_type, | |
anchor_proj_type, | |
anchor_one_stage, | |
anchor_window_down_factor, | |
attn_drop, | |
drop, | |
pretrained_window_size, | |
pretrained_stripe_size, | |
args, | |
) | |
self.norm1 = norm_layer(dim) | |
if self.args.local_connection: | |
self.conv = CAB(dim) | |
# self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
# self.mlp = Mlp( | |
# in_features=dim, | |
# hidden_features=int(dim * mlp_ratio), | |
# act_layer=act_layer, | |
# drop=drop, | |
# ) | |
# self.norm2 = norm_layer(dim) | |
def forward(self, x, x_size): | |
# Mixed attention | |
if self.args.local_connection: | |
x = ( | |
x | |
+ self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) | |
+ self.conv(x, x_size) | |
) | |
else: | |
x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) | |
# FFN | |
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) | |
# return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads=({self.num_heads_w}, {self.num_heads_s}), " | |
f"window_size={self.window_size}, window_shift={self.window_shift}, " | |
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, self.stripe_type={self.stripe_type}, " | |
f"mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" | |
) | |
# def flops(self): | |
# flops = 0 | |
# H, W = self.input_resolution | |
# # norm1 | |
# flops += self.dim * H * W | |
# # W-MSA/SW-MSA | |
# nW = H * W / self.stripe_size[0] / self.stripe_size[1] | |
# flops += nW * self.attn.flops(self.stripe_size[0] * self.stripe_size[1]) | |
# # mlp | |
# flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
# # norm2 | |
# flops += self.dim * H * W | |
# return flops | |