Spaces:
Running
on
T4
Running
on
T4
import math | |
from abc import ABC | |
from math import prod | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath | |
from architecture.grl_common.mixed_attn_block import ( | |
AnchorProjection, | |
CAB, | |
CPB_MLP, | |
QKVProjection, | |
) | |
from architecture.grl_common.ops import ( | |
window_partition, | |
window_reverse, | |
) | |
from architecture.grl_common.swin_v1_block import Mlp | |
class AffineTransform(nn.Module): | |
r"""Affine transformation of the attention map. | |
The window could be a square window or a stripe window. Supports attention between different window sizes | |
""" | |
def __init__(self, num_heads): | |
super(AffineTransform, self).__init__() | |
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1))) | |
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True) | |
# mlp to generate continuous relative position bias | |
self.cpb_mlp = CPB_MLP(2, num_heads) | |
def forward(self, attn, relative_coords_table, relative_position_index, mask): | |
B_, H, N1, N2 = attn.shape | |
# logit scale | |
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() | |
bias_table = self.cpb_mlp(relative_coords_table) # 2*Wh-1, 2*Ww-1, num_heads | |
bias_table = bias_table.view(-1, H) | |
bias = bias_table[relative_position_index.view(-1)] | |
bias = bias.view(N1, N2, -1).permute(2, 0, 1).contiguous() | |
# nH, Wh*Ww, Wh*Ww | |
bias = 16 * torch.sigmoid(bias) | |
attn = attn + bias.unsqueeze(0) | |
# W-MSA/SW-MSA | |
# shift attention mask | |
if mask is not None: | |
nW = mask.shape[0] | |
mask = mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(B_ // nW, nW, H, N1, N2) + mask | |
attn = attn.view(-1, H, N1, N2) | |
return attn | |
def _get_stripe_info(stripe_size_in, stripe_groups_in, stripe_shift, input_resolution): | |
stripe_size, shift_size = [], [] | |
for s, g, d in zip(stripe_size_in, stripe_groups_in, input_resolution): | |
if g is None: | |
stripe_size.append(s) | |
shift_size.append(s // 2 if stripe_shift else 0) | |
else: | |
stripe_size.append(d // g) | |
shift_size.append(0 if g == 1 else d // (g * 2)) | |
return stripe_size, shift_size | |
class Attention(ABC, nn.Module): | |
def __init__(self): | |
super(Attention, self).__init__() | |
def attn(self, q, k, v, attn_transform, table, index, mask, reshape=True): | |
# q, k, v: # nW*B, H, wh*ww, dim | |
# cosine attention map | |
B_, _, H, head_dim = q.shape | |
if self.euclidean_dist: | |
# print("use euclidean distance") | |
attn = torch.norm(q.unsqueeze(-2) - k.unsqueeze(-3), dim=-1) | |
else: | |
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) | |
attn = attn_transform(attn, table, index, mask) | |
# attention | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = attn @ v # B_, H, N1, head_dim | |
if reshape: | |
x = x.transpose(1, 2).reshape(B_, -1, H * head_dim) | |
# B_, N, C | |
return x | |
class WindowAttention(Attention): | |
r"""Window attention. QKV is the input to the forward method. | |
Args: | |
num_heads (int): Number of attention heads. | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. | |
""" | |
def __init__( | |
self, | |
input_resolution, | |
window_size, | |
num_heads, | |
window_shift=False, | |
attn_drop=0.0, | |
pretrained_window_size=[0, 0], | |
args=None, | |
): | |
super(WindowAttention, self).__init__() | |
self.input_resolution = input_resolution | |
self.window_size = window_size | |
self.pretrained_window_size = pretrained_window_size | |
self.num_heads = num_heads | |
self.shift_size = window_size[0] // 2 if window_shift else 0 | |
self.euclidean_dist = args.euclidean_dist | |
self.attn_transform = AffineTransform(num_heads) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, qkv, x_size, table, index, mask): | |
""" | |
Args: | |
qkv: input QKV features with shape of (B, L, 3C) | |
x_size: use x_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
H, W = x_size | |
B, L, C = qkv.shape | |
qkv = qkv.view(B, H, W, C) | |
# cyclic shift | |
if self.shift_size > 0: | |
qkv = torch.roll( | |
qkv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) | |
) | |
# partition windows | |
qkv = window_partition(qkv, self.window_size) # nW*B, wh, ww, C | |
qkv = qkv.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C | |
B_, N, _ = qkv.shape | |
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # nW*B, H, wh*ww, dim | |
# attention | |
x = self.attn(q, k, v, self.attn_transform, table, index, mask) | |
# merge windows | |
x = x.view(-1, *self.window_size, C // 3) | |
x = window_reverse(x, self.window_size, x_size) # B, H, W, C/3 | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
x = x.view(B, L, C // 3) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"window_size={self.window_size}, shift_size={self.shift_size}, " | |
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" | |
) | |
def flops(self, N): | |
pass | |
class AnchorStripeAttention(Attention): | |
r"""Stripe attention | |
Args: | |
stripe_size (tuple[int]): The height and width of the stripe. | |
num_heads (int): Number of attention heads. | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. | |
""" | |
def __init__( | |
self, | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
num_heads, | |
attn_drop=0.0, | |
pretrained_stripe_size=[0, 0], | |
anchor_window_down_factor=1, | |
args=None, | |
): | |
super(AnchorStripeAttention, self).__init__() | |
self.input_resolution = input_resolution | |
self.stripe_size = stripe_size # Wh, Ww | |
self.stripe_groups = stripe_groups | |
self.stripe_shift = stripe_shift | |
self.num_heads = num_heads | |
self.pretrained_stripe_size = pretrained_stripe_size | |
self.anchor_window_down_factor = anchor_window_down_factor | |
self.euclidean_dist = args.euclidean_dist | |
self.attn_transform1 = AffineTransform(num_heads) | |
self.attn_transform2 = AffineTransform(num_heads) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward( | |
self, qkv, anchor, x_size, table, index_a2w, index_w2a, mask_a2w, mask_w2a | |
): | |
""" | |
Args: | |
qkv: input features with shape of (B, L, C) | |
anchor: | |
x_size: use stripe_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
H, W = x_size | |
B, L, C = qkv.shape | |
qkv = qkv.view(B, H, W, C) | |
stripe_size, shift_size = _get_stripe_info( | |
self.stripe_size, self.stripe_groups, self.stripe_shift, x_size | |
) | |
anchor_stripe_size = [s // self.anchor_window_down_factor for s in stripe_size] | |
anchor_shift_size = [s // self.anchor_window_down_factor for s in shift_size] | |
# cyclic shift | |
if self.stripe_shift: | |
qkv = torch.roll(qkv, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2)) | |
anchor = torch.roll( | |
anchor, | |
shifts=(-anchor_shift_size[0], -anchor_shift_size[1]), | |
dims=(1, 2), | |
) | |
# partition windows | |
qkv = window_partition(qkv, stripe_size) # nW*B, wh, ww, C | |
qkv = qkv.view(-1, prod(stripe_size), C) # nW*B, wh*ww, C | |
anchor = window_partition(anchor, anchor_stripe_size) | |
anchor = anchor.view(-1, prod(anchor_stripe_size), C // 3) | |
B_, N1, _ = qkv.shape | |
N2 = anchor.shape[1] | |
qkv = qkv.reshape(B_, N1, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
anchor = anchor.reshape(B_, N2, self.num_heads, -1).permute(0, 2, 1, 3) | |
# attention | |
x = self.attn( | |
anchor, k, v, self.attn_transform1, table, index_a2w, mask_a2w, False | |
) | |
x = self.attn(q, anchor, x, self.attn_transform2, table, index_w2a, mask_w2a) | |
# merge windows | |
x = x.view(B_, *stripe_size, C // 3) | |
x = window_reverse(x, stripe_size, x_size) # B H' W' C | |
# reverse the shift | |
if self.stripe_shift: | |
x = torch.roll(x, shifts=shift_size, dims=(1, 2)) | |
x = x.view(B, H * W, C // 3) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, " | |
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}, anchor_window_down_factor={self.anchor_window_down_factor}" | |
) | |
def flops(self, N): | |
pass | |
class MixedAttention(nn.Module): | |
r"""Mixed window attention and stripe attention | |
Args: | |
dim (int): Number of input channels. | |
stripe_size (tuple[int]): The height and width of the stripe. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads_w, | |
num_heads_s, | |
window_size, | |
window_shift, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
qkv_bias=True, | |
qkv_proj_type="linear", | |
anchor_proj_type="separable_conv", | |
anchor_one_stage=True, | |
anchor_window_down_factor=1, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
pretrained_window_size=[0, 0], | |
pretrained_stripe_size=[0, 0], | |
args=None, | |
): | |
super(MixedAttention, self).__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.args = args | |
# print(args) | |
self.qkv = QKVProjection(dim, qkv_bias, qkv_proj_type, args) | |
# anchor is only used for stripe attention | |
self.anchor = AnchorProjection( | |
dim, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, args | |
) | |
self.window_attn = WindowAttention( | |
input_resolution, | |
window_size, | |
num_heads_w, | |
window_shift, | |
attn_drop, | |
pretrained_window_size, | |
args, | |
) | |
self.stripe_attn = AnchorStripeAttention( | |
input_resolution, | |
stripe_size, | |
stripe_groups, | |
stripe_shift, | |
num_heads_s, | |
attn_drop, | |
pretrained_stripe_size, | |
anchor_window_down_factor, | |
args, | |
) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, x_size, table_index_mask): | |
""" | |
Args: | |
x: input features with shape of (B, L, C) | |
stripe_size: use stripe_size to determine whether the relative positional bias table and index | |
need to be regenerated. | |
""" | |
B, L, C = x.shape | |
# qkv projection | |
qkv = self.qkv(x, x_size) | |
qkv_window, qkv_stripe = torch.split(qkv, C * 3 // 2, dim=-1) | |
# anchor projection | |
anchor = self.anchor(x, x_size) | |
# attention | |
x_window = self.window_attn( | |
qkv_window, x_size, *self._get_table_index_mask(table_index_mask, True) | |
) | |
x_stripe = self.stripe_attn( | |
qkv_stripe, | |
anchor, | |
x_size, | |
*self._get_table_index_mask(table_index_mask, False), | |
) | |
x = torch.cat([x_window, x_stripe], dim=-1) | |
# output projection | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def _get_table_index_mask(self, table_index_mask, window_attn=True): | |
if window_attn: | |
return ( | |
table_index_mask["table_w"], | |
table_index_mask["index_w"], | |
table_index_mask["mask_w"], | |
) | |
else: | |
return ( | |
table_index_mask["table_s"], | |
table_index_mask["index_a2w"], | |
table_index_mask["index_w2a"], | |
table_index_mask["mask_a2w"], | |
table_index_mask["mask_w2a"], | |
) | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, input_resolution={self.input_resolution}" | |
def flops(self, N): | |
pass | |
class EfficientMixAttnTransformerBlock(nn.Module): | |
r"""Mix attention transformer block with shared QKV projection and output projection for mixed attention modules. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
pretrained_stripe_size (int): Window size in pre-training. | |
attn_type (str, optional): Attention type. Default: cwhv. | |
c: residual blocks | |
w: window attention | |
h: horizontal stripe attention | |
v: vertical stripe attention | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads_w, | |
num_heads_s, | |
window_size=7, | |
window_shift=False, | |
stripe_size=[8, 8], | |
stripe_groups=[None, None], | |
stripe_shift=False, | |
stripe_type="H", | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qkv_proj_type="linear", | |
anchor_proj_type="separable_conv", | |
anchor_one_stage=True, | |
anchor_window_down_factor=1, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
pretrained_window_size=[0, 0], | |
pretrained_stripe_size=[0, 0], | |
res_scale=1.0, | |
args=None, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads_w = num_heads_w | |
self.num_heads_s = num_heads_s | |
self.window_size = window_size | |
self.window_shift = window_shift | |
self.stripe_shift = stripe_shift | |
self.stripe_type = stripe_type | |
self.args = args | |
if self.stripe_type == "W": | |
self.stripe_size = stripe_size[::-1] | |
self.stripe_groups = stripe_groups[::-1] | |
else: | |
self.stripe_size = stripe_size | |
self.stripe_groups = stripe_groups | |
self.mlp_ratio = mlp_ratio | |
self.res_scale = res_scale | |
self.attn = MixedAttention( | |
dim, | |
input_resolution, | |
num_heads_w, | |
num_heads_s, | |
window_size, | |
window_shift, | |
self.stripe_size, | |
self.stripe_groups, | |
stripe_shift, | |
qkv_bias, | |
qkv_proj_type, | |
anchor_proj_type, | |
anchor_one_stage, | |
anchor_window_down_factor, | |
attn_drop, | |
drop, | |
pretrained_window_size, | |
pretrained_stripe_size, | |
args, | |
) | |
self.norm1 = norm_layer(dim) | |
if self.args.local_connection: | |
self.conv = CAB(dim) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=int(dim * mlp_ratio), | |
act_layer=act_layer, | |
drop=drop, | |
) | |
self.norm2 = norm_layer(dim) | |
def _get_table_index_mask(self, all_table_index_mask): | |
table_index_mask = { | |
"table_w": all_table_index_mask["table_w"], | |
"index_w": all_table_index_mask["index_w"], | |
} | |
if self.stripe_type == "W": | |
table_index_mask["table_s"] = all_table_index_mask["table_sv"] | |
table_index_mask["index_a2w"] = all_table_index_mask["index_sv_a2w"] | |
table_index_mask["index_w2a"] = all_table_index_mask["index_sv_w2a"] | |
else: | |
table_index_mask["table_s"] = all_table_index_mask["table_sh"] | |
table_index_mask["index_a2w"] = all_table_index_mask["index_sh_a2w"] | |
table_index_mask["index_w2a"] = all_table_index_mask["index_sh_w2a"] | |
if self.window_shift: | |
table_index_mask["mask_w"] = all_table_index_mask["mask_w"] | |
else: | |
table_index_mask["mask_w"] = None | |
if self.stripe_shift: | |
if self.stripe_type == "W": | |
table_index_mask["mask_a2w"] = all_table_index_mask["mask_sv_a2w"] | |
table_index_mask["mask_w2a"] = all_table_index_mask["mask_sv_w2a"] | |
else: | |
table_index_mask["mask_a2w"] = all_table_index_mask["mask_sh_a2w"] | |
table_index_mask["mask_w2a"] = all_table_index_mask["mask_sh_w2a"] | |
else: | |
table_index_mask["mask_a2w"] = None | |
table_index_mask["mask_w2a"] = None | |
return table_index_mask | |
def forward(self, x, x_size, all_table_index_mask): | |
# Mixed attention | |
table_index_mask = self._get_table_index_mask(all_table_index_mask) | |
if self.args.local_connection: | |
x = ( | |
x | |
+ self.res_scale | |
* self.drop_path(self.norm1(self.attn(x, x_size, table_index_mask))) | |
+ self.conv(x, x_size) | |
) | |
else: | |
x = x + self.res_scale * self.drop_path( | |
self.norm1(self.attn(x, x_size, table_index_mask)) | |
) | |
# FFN | |
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads=({self.num_heads_w}, {self.num_heads_s}), " | |
f"window_size={self.window_size}, window_shift={self.window_shift}, " | |
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, self.stripe_type={self.stripe_type}, " | |
f"mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" | |
) | |
def flops(self): | |
pass | |