APISR / architecture /grl_common /mixed_attn_block_efficient.py
HikariDawn's picture
feat: initial push
561c629
raw
history blame
19.8 kB
import math
from abc import ABC
from math import prod
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath
from architecture.grl_common.mixed_attn_block import (
AnchorProjection,
CAB,
CPB_MLP,
QKVProjection,
)
from architecture.grl_common.ops import (
window_partition,
window_reverse,
)
from architecture.grl_common.swin_v1_block import Mlp
class AffineTransform(nn.Module):
r"""Affine transformation of the attention map.
The window could be a square window or a stripe window. Supports attention between different window sizes
"""
def __init__(self, num_heads):
super(AffineTransform, self).__init__()
logit_scale = torch.log(10 * torch.ones((num_heads, 1, 1)))
self.logit_scale = nn.Parameter(logit_scale, requires_grad=True)
# mlp to generate continuous relative position bias
self.cpb_mlp = CPB_MLP(2, num_heads)
def forward(self, attn, relative_coords_table, relative_position_index, mask):
B_, H, N1, N2 = attn.shape
# logit scale
attn = attn * torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp()
bias_table = self.cpb_mlp(relative_coords_table) # 2*Wh-1, 2*Ww-1, num_heads
bias_table = bias_table.view(-1, H)
bias = bias_table[relative_position_index.view(-1)]
bias = bias.view(N1, N2, -1).permute(2, 0, 1).contiguous()
# nH, Wh*Ww, Wh*Ww
bias = 16 * torch.sigmoid(bias)
attn = attn + bias.unsqueeze(0)
# W-MSA/SW-MSA
# shift attention mask
if mask is not None:
nW = mask.shape[0]
mask = mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(B_ // nW, nW, H, N1, N2) + mask
attn = attn.view(-1, H, N1, N2)
return attn
def _get_stripe_info(stripe_size_in, stripe_groups_in, stripe_shift, input_resolution):
stripe_size, shift_size = [], []
for s, g, d in zip(stripe_size_in, stripe_groups_in, input_resolution):
if g is None:
stripe_size.append(s)
shift_size.append(s // 2 if stripe_shift else 0)
else:
stripe_size.append(d // g)
shift_size.append(0 if g == 1 else d // (g * 2))
return stripe_size, shift_size
class Attention(ABC, nn.Module):
def __init__(self):
super(Attention, self).__init__()
def attn(self, q, k, v, attn_transform, table, index, mask, reshape=True):
# q, k, v: # nW*B, H, wh*ww, dim
# cosine attention map
B_, _, H, head_dim = q.shape
if self.euclidean_dist:
# print("use euclidean distance")
attn = torch.norm(q.unsqueeze(-2) - k.unsqueeze(-3), dim=-1)
else:
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
attn = attn_transform(attn, table, index, mask)
# attention
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = attn @ v # B_, H, N1, head_dim
if reshape:
x = x.transpose(1, 2).reshape(B_, -1, H * head_dim)
# B_, N, C
return x
class WindowAttention(Attention):
r"""Window attention. QKV is the input to the forward method.
Args:
num_heads (int): Number of attention heads.
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
"""
def __init__(
self,
input_resolution,
window_size,
num_heads,
window_shift=False,
attn_drop=0.0,
pretrained_window_size=[0, 0],
args=None,
):
super(WindowAttention, self).__init__()
self.input_resolution = input_resolution
self.window_size = window_size
self.pretrained_window_size = pretrained_window_size
self.num_heads = num_heads
self.shift_size = window_size[0] // 2 if window_shift else 0
self.euclidean_dist = args.euclidean_dist
self.attn_transform = AffineTransform(num_heads)
self.attn_drop = nn.Dropout(attn_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, qkv, x_size, table, index, mask):
"""
Args:
qkv: input QKV features with shape of (B, L, 3C)
x_size: use x_size to determine whether the relative positional bias table and index
need to be regenerated.
"""
H, W = x_size
B, L, C = qkv.shape
qkv = qkv.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
qkv = torch.roll(
qkv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)
)
# partition windows
qkv = window_partition(qkv, self.window_size) # nW*B, wh, ww, C
qkv = qkv.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C
B_, N, _ = qkv.shape
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # nW*B, H, wh*ww, dim
# attention
x = self.attn(q, k, v, self.attn_transform, table, index, mask)
# merge windows
x = x.view(-1, *self.window_size, C // 3)
x = window_reverse(x, self.window_size, x_size) # B, H, W, C/3
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
x = x.view(B, L, C // 3)
return x
def extra_repr(self) -> str:
return (
f"window_size={self.window_size}, shift_size={self.shift_size}, "
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}"
)
def flops(self, N):
pass
class AnchorStripeAttention(Attention):
r"""Stripe attention
Args:
stripe_size (tuple[int]): The height and width of the stripe.
num_heads (int): Number of attention heads.
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training.
"""
def __init__(
self,
input_resolution,
stripe_size,
stripe_groups,
stripe_shift,
num_heads,
attn_drop=0.0,
pretrained_stripe_size=[0, 0],
anchor_window_down_factor=1,
args=None,
):
super(AnchorStripeAttention, self).__init__()
self.input_resolution = input_resolution
self.stripe_size = stripe_size # Wh, Ww
self.stripe_groups = stripe_groups
self.stripe_shift = stripe_shift
self.num_heads = num_heads
self.pretrained_stripe_size = pretrained_stripe_size
self.anchor_window_down_factor = anchor_window_down_factor
self.euclidean_dist = args.euclidean_dist
self.attn_transform1 = AffineTransform(num_heads)
self.attn_transform2 = AffineTransform(num_heads)
self.attn_drop = nn.Dropout(attn_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(
self, qkv, anchor, x_size, table, index_a2w, index_w2a, mask_a2w, mask_w2a
):
"""
Args:
qkv: input features with shape of (B, L, C)
anchor:
x_size: use stripe_size to determine whether the relative positional bias table and index
need to be regenerated.
"""
H, W = x_size
B, L, C = qkv.shape
qkv = qkv.view(B, H, W, C)
stripe_size, shift_size = _get_stripe_info(
self.stripe_size, self.stripe_groups, self.stripe_shift, x_size
)
anchor_stripe_size = [s // self.anchor_window_down_factor for s in stripe_size]
anchor_shift_size = [s // self.anchor_window_down_factor for s in shift_size]
# cyclic shift
if self.stripe_shift:
qkv = torch.roll(qkv, shifts=(-shift_size[0], -shift_size[1]), dims=(1, 2))
anchor = torch.roll(
anchor,
shifts=(-anchor_shift_size[0], -anchor_shift_size[1]),
dims=(1, 2),
)
# partition windows
qkv = window_partition(qkv, stripe_size) # nW*B, wh, ww, C
qkv = qkv.view(-1, prod(stripe_size), C) # nW*B, wh*ww, C
anchor = window_partition(anchor, anchor_stripe_size)
anchor = anchor.view(-1, prod(anchor_stripe_size), C // 3)
B_, N1, _ = qkv.shape
N2 = anchor.shape[1]
qkv = qkv.reshape(B_, N1, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
anchor = anchor.reshape(B_, N2, self.num_heads, -1).permute(0, 2, 1, 3)
# attention
x = self.attn(
anchor, k, v, self.attn_transform1, table, index_a2w, mask_a2w, False
)
x = self.attn(q, anchor, x, self.attn_transform2, table, index_w2a, mask_w2a)
# merge windows
x = x.view(B_, *stripe_size, C // 3)
x = window_reverse(x, stripe_size, x_size) # B H' W' C
# reverse the shift
if self.stripe_shift:
x = torch.roll(x, shifts=shift_size, dims=(1, 2))
x = x.view(B, H * W, C // 3)
return x
def extra_repr(self) -> str:
return (
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, "
f"pretrained_stripe_size={self.pretrained_stripe_size}, num_heads={self.num_heads}, anchor_window_down_factor={self.anchor_window_down_factor}"
)
def flops(self, N):
pass
class MixedAttention(nn.Module):
r"""Mixed window attention and stripe attention
Args:
dim (int): Number of input channels.
stripe_size (tuple[int]): The height and width of the stripe.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
pretrained_stripe_size (tuple[int]): The height and width of the stripe in pre-training.
"""
def __init__(
self,
dim,
input_resolution,
num_heads_w,
num_heads_s,
window_size,
window_shift,
stripe_size,
stripe_groups,
stripe_shift,
qkv_bias=True,
qkv_proj_type="linear",
anchor_proj_type="separable_conv",
anchor_one_stage=True,
anchor_window_down_factor=1,
attn_drop=0.0,
proj_drop=0.0,
pretrained_window_size=[0, 0],
pretrained_stripe_size=[0, 0],
args=None,
):
super(MixedAttention, self).__init__()
self.dim = dim
self.input_resolution = input_resolution
self.args = args
# print(args)
self.qkv = QKVProjection(dim, qkv_bias, qkv_proj_type, args)
# anchor is only used for stripe attention
self.anchor = AnchorProjection(
dim, anchor_proj_type, anchor_one_stage, anchor_window_down_factor, args
)
self.window_attn = WindowAttention(
input_resolution,
window_size,
num_heads_w,
window_shift,
attn_drop,
pretrained_window_size,
args,
)
self.stripe_attn = AnchorStripeAttention(
input_resolution,
stripe_size,
stripe_groups,
stripe_shift,
num_heads_s,
attn_drop,
pretrained_stripe_size,
anchor_window_down_factor,
args,
)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, x_size, table_index_mask):
"""
Args:
x: input features with shape of (B, L, C)
stripe_size: use stripe_size to determine whether the relative positional bias table and index
need to be regenerated.
"""
B, L, C = x.shape
# qkv projection
qkv = self.qkv(x, x_size)
qkv_window, qkv_stripe = torch.split(qkv, C * 3 // 2, dim=-1)
# anchor projection
anchor = self.anchor(x, x_size)
# attention
x_window = self.window_attn(
qkv_window, x_size, *self._get_table_index_mask(table_index_mask, True)
)
x_stripe = self.stripe_attn(
qkv_stripe,
anchor,
x_size,
*self._get_table_index_mask(table_index_mask, False),
)
x = torch.cat([x_window, x_stripe], dim=-1)
# output projection
x = self.proj(x)
x = self.proj_drop(x)
return x
def _get_table_index_mask(self, table_index_mask, window_attn=True):
if window_attn:
return (
table_index_mask["table_w"],
table_index_mask["index_w"],
table_index_mask["mask_w"],
)
else:
return (
table_index_mask["table_s"],
table_index_mask["index_a2w"],
table_index_mask["index_w2a"],
table_index_mask["mask_a2w"],
table_index_mask["mask_w2a"],
)
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}"
def flops(self, N):
pass
class EfficientMixAttnTransformerBlock(nn.Module):
r"""Mix attention transformer block with shared QKV projection and output projection for mixed attention modules.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
pretrained_stripe_size (int): Window size in pre-training.
attn_type (str, optional): Attention type. Default: cwhv.
c: residual blocks
w: window attention
h: horizontal stripe attention
v: vertical stripe attention
"""
def __init__(
self,
dim,
input_resolution,
num_heads_w,
num_heads_s,
window_size=7,
window_shift=False,
stripe_size=[8, 8],
stripe_groups=[None, None],
stripe_shift=False,
stripe_type="H",
mlp_ratio=4.0,
qkv_bias=True,
qkv_proj_type="linear",
anchor_proj_type="separable_conv",
anchor_one_stage=True,
anchor_window_down_factor=1,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
pretrained_window_size=[0, 0],
pretrained_stripe_size=[0, 0],
res_scale=1.0,
args=None,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads_w = num_heads_w
self.num_heads_s = num_heads_s
self.window_size = window_size
self.window_shift = window_shift
self.stripe_shift = stripe_shift
self.stripe_type = stripe_type
self.args = args
if self.stripe_type == "W":
self.stripe_size = stripe_size[::-1]
self.stripe_groups = stripe_groups[::-1]
else:
self.stripe_size = stripe_size
self.stripe_groups = stripe_groups
self.mlp_ratio = mlp_ratio
self.res_scale = res_scale
self.attn = MixedAttention(
dim,
input_resolution,
num_heads_w,
num_heads_s,
window_size,
window_shift,
self.stripe_size,
self.stripe_groups,
stripe_shift,
qkv_bias,
qkv_proj_type,
anchor_proj_type,
anchor_one_stage,
anchor_window_down_factor,
attn_drop,
drop,
pretrained_window_size,
pretrained_stripe_size,
args,
)
self.norm1 = norm_layer(dim)
if self.args.local_connection:
self.conv = CAB(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
)
self.norm2 = norm_layer(dim)
def _get_table_index_mask(self, all_table_index_mask):
table_index_mask = {
"table_w": all_table_index_mask["table_w"],
"index_w": all_table_index_mask["index_w"],
}
if self.stripe_type == "W":
table_index_mask["table_s"] = all_table_index_mask["table_sv"]
table_index_mask["index_a2w"] = all_table_index_mask["index_sv_a2w"]
table_index_mask["index_w2a"] = all_table_index_mask["index_sv_w2a"]
else:
table_index_mask["table_s"] = all_table_index_mask["table_sh"]
table_index_mask["index_a2w"] = all_table_index_mask["index_sh_a2w"]
table_index_mask["index_w2a"] = all_table_index_mask["index_sh_w2a"]
if self.window_shift:
table_index_mask["mask_w"] = all_table_index_mask["mask_w"]
else:
table_index_mask["mask_w"] = None
if self.stripe_shift:
if self.stripe_type == "W":
table_index_mask["mask_a2w"] = all_table_index_mask["mask_sv_a2w"]
table_index_mask["mask_w2a"] = all_table_index_mask["mask_sv_w2a"]
else:
table_index_mask["mask_a2w"] = all_table_index_mask["mask_sh_a2w"]
table_index_mask["mask_w2a"] = all_table_index_mask["mask_sh_w2a"]
else:
table_index_mask["mask_a2w"] = None
table_index_mask["mask_w2a"] = None
return table_index_mask
def forward(self, x, x_size, all_table_index_mask):
# Mixed attention
table_index_mask = self._get_table_index_mask(all_table_index_mask)
if self.args.local_connection:
x = (
x
+ self.res_scale
* self.drop_path(self.norm1(self.attn(x, x_size, table_index_mask)))
+ self.conv(x, x_size)
)
else:
x = x + self.res_scale * self.drop_path(
self.norm1(self.attn(x, x_size, table_index_mask))
)
# FFN
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x)))
return x
def extra_repr(self) -> str:
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads=({self.num_heads_w}, {self.num_heads_s}), "
f"window_size={self.window_size}, window_shift={self.window_shift}, "
f"stripe_size={self.stripe_size}, stripe_groups={self.stripe_groups}, stripe_shift={self.stripe_shift}, self.stripe_type={self.stripe_type}, "
f"mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}"
)
def flops(self):
pass