File size: 16,253 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# -*- coding: utf-8 -*-

import os, sys
import torch
import glob
import time, shutil
import math
import gc
from tqdm import tqdm
from collections import defaultdict

# torch module import
from torch.multiprocessing import Pool, Process, set_start_method
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader


try:
    set_start_method('spawn')
except RuntimeError:
    pass


# import files from local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from loss.gan_loss import GANLoss, MultiScaleGANLoss
from loss.pixel_loss import PixelLoss, L1_Charbonnier_loss
from loss.perceptual_loss import PerceptualLoss
from loss.anime_perceptual_loss import Anime_PerceptualLoss
from architecture.dataset import ImageDataset
from scripts.generate_lr_esr import generate_low_res_esr


# Mixed precision training
scaler = torch.cuda.amp.GradScaler()

class train_master(object):
    def __init__(self, options, args, model_name, has_discriminator=False) -> None:
        # General specs setup
        self.args = args
        self.model_name = model_name
        self.options = options
        self.has_discriminator = has_discriminator

        # Loss init
        self.loss_init()

        # Generator
        self.call_model() # generator + discriminator...

        # Optimizer 
        self.learning_rate = options['start_learning_rate']
        self.optimizer_g = torch.optim.Adam(self.generator.parameters(), lr=self.learning_rate, betas=(options["adam_beta1"], options["adam_beta2"]))
        if self.has_discriminator:
            self.optimizer_d = torch.optim.Adam(self.discriminator.parameters(), lr=self.learning_rate, betas=(self.options["adam_beta1"], self.options["adam_beta2"]))

        # Train specs
        self.start_iteration = 0
        self.lowest_generator_loss = float("inf")

        # Other auxiliary function
        self.writer = SummaryWriter() 
        self.weight_store = defaultdict(int)

        # Options setting
        self.n_iterations = options['train_iterations']
        self.batch_size = options['train_batch_size']  
        self.n_cpu = options['train_dataloader_workers']   


    def adjust_learning_rate(self, iteration_idx):
        self.learning_rate = self.options['start_learning_rate']
        end_iteration = self.options['train_iterations']

        # Calculate a learning rate we need in real-time based on the iteration_idx
        for idx in range(min(end_iteration, iteration_idx)//self.options['decay_iteration']):
            idx = idx+1
            if idx * self.options['decay_iteration'] in self.options['double_milestones']:
                # double the learning rate in milestones
                self.learning_rate = self.learning_rate * 2
            else:
                # else, try to multiply decay_gamma (when we decay, we won't upscale)
                self.learning_rate = self.learning_rate * self.options['decay_gamma']     # should be divisible in all cases

        # Change the learning rate to our target
        for param_group in self.optimizer_g.param_groups:
            param_group['lr'] = self.learning_rate
        
        if self.has_discriminator:
            # print("We didn't yet handle discriminator, but we think that it should be necessary")
            for param_group in self.optimizer_d.param_groups:
                param_group['lr'] = self.learning_rate

        assert(self.learning_rate == self.optimizer_g.param_groups[0]['lr'])


    def pixel_loss_load(self):
        if self.options['pixel_loss'] == "L1":
            self.cri_pix = PixelLoss().cuda()
        elif self.options['pixel_loss'] == "L1_Charbonnier":
            self.cri_pix = L1_Charbonnier_loss().cuda()

        print("We are using {} loss".format(self.options['pixel_loss']))
        

    def GAN_loss_load(self):
        # parameter init
        gan_loss_weight = self.options["gan_loss_weight"]
        vgg_type = self.options['train_perceptual_vgg_type']

        # Preceptual Loss
        self.cri_pix = torch.nn.L1Loss().cuda()
        self.cri_vgg_perceptual = PerceptualLoss(self.options['train_perceptual_layer_weights'], vgg_type, perceptual_weight=self.options["vgg_perceptual_loss_weight"]).cuda()
        self.cri_danbooru_perceptual = Anime_PerceptualLoss(self.options["Danbooru_layer_weights"], perceptual_weight=self.options["danbooru_perceptual_loss_weight"]).cuda()

        # GAN loss
        if self.options['discriminator_type'] == "PatchDiscriminator":
            self.cri_gan = MultiScaleGANLoss(gan_type="lsgan", loss_weight=gan_loss_weight).cuda()  # already put in loss scaler for discriminator
        elif self.options['discriminator_type'] == "UNetDiscriminator":
            self.cri_gan = GANLoss(gan_type="vanilla", loss_weight=gan_loss_weight).cuda()  # already put in loss scaler for discriminator

    def tensorboard_epoch_draw(self, epoch_loss, epoch):
        self.writer.add_scalar('Loss/train-Loss-Epoch', epoch_loss, epoch)


    def master_run(self):
        torch.backends.cudnn.benchmark = True
        print("options are ", self.options)

        # Generate a new LR dataset before doing anything (Must before Data Loading)
        self.generate_lr()

        # Load data
        train_lr_paths = glob.glob(self.options["lr_dataset_path"] + "/*.*")
        degrade_hr_paths = glob.glob(self.options["degrade_hr_dataset_path"] + "/*.*")
        train_hr_paths = glob.glob(self.options["train_hr_dataset_path"] + "/*.*")
        train_dataloader = DataLoader(ImageDataset(train_lr_paths, degrade_hr_paths, train_hr_paths), batch_size=self.batch_size, shuffle=True, num_workers=self.n_cpu)  # ONLY LOAD HALF OF CPU AVAILABLE
        dataset_length = len(os.listdir(self.options["train_hr_dataset_path"]))


        # Check if we need to load weight
        if self.args.auto_resume_best or self.args.auto_resume_closest:
            self.load_weight(self.model_name)
        elif self.args.pretrained_path != "":   # If we give a pretrained path, we will use it (Should have in GAN training which uses pretrained L1 loss Network)
            self.load_pretrained(self.model_name)

        # Start iterating the epochs 
        start_epoch = self.start_iteration // math.ceil(dataset_length / self.options['train_batch_size'])
        n_epochs = self.n_iterations // math.ceil(dataset_length / self.options['train_batch_size'])
        iteration_idx = self.start_iteration            # init the iteration index
        self.batch_idx = iteration_idx
        self.adjust_learning_rate(iteration_idx)        # adjust the learning rate to the desired one at the beginning

        for epoch in range(start_epoch, n_epochs):
            print("This is epoch {} and the start iteration is {} with learning rate {}".format(epoch, iteration_idx, self.optimizer_g.param_groups[0]['lr']))

            # Generate new lr degradation image
            if epoch != start_epoch and epoch % self.options['degradate_generation_freq'] == 0:
                self.generate_lr()

            # Batch training
            loss_per_epoch = 0.0
            self.generator.train()
            tqdm_bar = tqdm(train_dataloader, total=len(train_dataloader))
            for batch_idx, imgs in enumerate(tqdm_bar):

                imgs_lr = imgs["lr"].cuda()
                imgs_degrade_hr = imgs["degrade_hr"].cuda()
                imgs_hr = imgs["hr"].cuda()

                # Used for each iteration
                self.generator_loss = 0
                self.single_iteration(imgs_lr, imgs_degrade_hr, imgs_hr)
                
                # tensorboard and updates
                self.tensorboard_report(iteration_idx)
                loss_per_epoch += self.generator_loss.item()
                
                ################################# Save model weights and update hyperparameter ########################################
                if self.lowest_generator_loss >= self.generator_loss.item():
                    self.lowest_generator_loss = self.generator_loss.item()
                    print("\nSave model with the lowest generator_loss among all iteartions ", self.lowest_generator_loss)

                    # Store the best
                    self.save_weight(iteration_idx, self.model_name+"_best", self.options)

                    self.lowest_tensorboard_report(iteration_idx)
   
                # Update iteration and learning rate
                iteration_idx += 1
                self.batch_idx = iteration_idx
                if iteration_idx % self.options['decay_iteration'] == 0:
                    self.adjust_learning_rate(iteration_idx)    # adjust the learning rate to the desired one
                    print("Update the learning rate to {} at iteration {} ".format(self.optimizer_g.param_groups[0]['lr'], iteration_idx))

                # Don't clean any memory here, it will dramatically slow down the code
                
            # Per epoch report
            self.tensorboard_epoch_draw( loss_per_epoch/batch_idx, epoch)
            

            # Per epoch store weight
            self.save_weight(iteration_idx, self.model_name+"_closest", self.options)
            # Backup Checkpoint (Per 50 epoch)
            if epoch % self.options['checkpoints_freq'] == 0 or epoch == n_epochs-1:
                self.save_weight(iteration_idx, "checkpoints/" + self.model_name + "_epoch_" + str(epoch), self.options)


            # Clean unneeded GPU cache (since we use subprocess for generate_lr(), so we need to kill them all)
            torch.cuda.empty_cache() 
            time.sleep(5)   # For enough time to clean the cache
            


    def single_iteration(self, imgs_lr, imgs_degrade_hr, imgs_hr):

        ############################################# Generator section ##################################################
        self.optimizer_g.zero_grad()
        if self.has_discriminator:
            for p in self.discriminator.parameters():
                p.requires_grad = False

        with torch.cuda.amp.autocast():
            # generate high res image
            gen_hr = self.generator(imgs_lr)

            # all distinct loss will be stored in self.weight_store (per iteration)
            self.calculate_loss(gen_hr, imgs_hr)

        # backward needed loss
        # self.loss_generator_total.backward()
        # self.optimizer_g.step()
        scaler.scale(self.generator_loss).backward()  # loss backward
        scaler.step(self.optimizer_g)
        scaler.update()
        ###################################################################################################################

    
        if self.has_discriminator:
            ##################################### Discriminator section  #####################################################
            for p in self.discriminator.parameters():
                p.requires_grad = True

            self.optimizer_d.zero_grad()

            # discriminator real input
            with torch.cuda.amp.autocast():
                # We only need imgs_degrade_hr instead of imgs_hr in discriminator (Thus, we don't want to introduce usm in the discriminator)
                real_d_preds = self.discriminator(imgs_degrade_hr) 
                l_d_real = self.cri_gan(real_d_preds, True, is_disc=True)
            scaler.scale(l_d_real).backward()


            # discriminator fake input
            with torch.cuda.amp.autocast():
                fake_d_preds = self.discriminator(gen_hr.detach().clone())
                l_d_fake = self.cri_gan(fake_d_preds, False, is_disc=True)
            scaler.scale(l_d_fake).backward()

            # update
            scaler.step(self.optimizer_d)
            scaler.update()
            ##################################################################################################################

    
    def load_pretrained(self, name):
        # This part will load generator weight here, and it doesn't need to 

        weight_dir = self.args.pretrained_path
        if not os.path.exists(weight_dir):
            print("No such pretrained "+weight_dir+" file exists! We end the program! Please check the dir!")
            os._exit(0)
        
        checkpoint_g = torch.load(weight_dir)
        if 'model_state_dict' in checkpoint_g:
            self.generator.load_state_dict(checkpoint_g['model_state_dict'])
        elif 'params_ema' in checkpoint_g:
            self.generator.load_state_dict(checkpoint_g['params_ema'])
        else:
            raise NotImplementedError("We didn't cannot locate the weight of thie pretrained weight")
        
        print(f"We will use pretrained "+name+" weight!")
        

    def load_weight(self, head_prefix):
        # Resume best or the closest weight available
        head = head_prefix+"_best" if self.args.auto_resume_best else head_prefix+"_closest"
        
        if os.path.exists("saved_models/"+head+"_generator.pth"):
            print("We need to resume previous " + head + " weight")

            # Generator
            checkpoint_g = torch.load("saved_models/"+head+"_generator.pth")
            self.generator.load_state_dict(checkpoint_g['model_state_dict'])
            self.optimizer_g.load_state_dict(checkpoint_g['optimizer_state_dict'])

            # Discriminator
            if self.has_discriminator:
                checkpoint_d = torch.load("saved_models/"+head+"_discriminator.pth")
                self.discriminator.load_state_dict(checkpoint_d['model_state_dict'])
                self.optimizer_d.load_state_dict(checkpoint_d['optimizer_state_dict'])
                assert(checkpoint_g['iteration'] == checkpoint_d['iteration']) # must be the same for iteration in generator and discriminator

            self.start_iteration = checkpoint_g['iteration'] + 1
            
            # Prepare lowest generator
            if os.path.exists("saved_models/" + head_prefix + "_best_generator.pth"):
                checkpoint_g = torch.load("saved_models/" + head_prefix + "_best_generator.pth") # load generator weight
            else:
                print("There is no best weight exists!")
            self.lowest_generator_loss = min(self.lowest_generator_loss, checkpoint_g["lowest_generator_weight"] )
            print("The lowest generator loss at the beginning is ", self.lowest_generator_loss)
        else:
            print(f"No saved_models/"+head+"_generator.pth " or " saved_models/"+head+"_discriminator.pth exists")


        print(f"We will start from the iteration {self.start_iteration}")



    def save_weight(self, iteration, name, opt):

        # Generator
        torch.save({
                'iteration': iteration,
                'model_state_dict':  self.generator.state_dict(),
                'optimizer_state_dict': self.optimizer_g.state_dict(),
                'lowest_generator_weight': self.lowest_generator_loss,
                'opt': opt,
                }, "saved_models/" + name + "_generator.pth")
        # 'pixel_loss': self.weight_store["pixel_loss"], 
        # 'perceptual_loss': self.weight_store['perceptual_loss'],
        # 'gan_loss': self.weight_store["gan_loss"],


        if self.has_discriminator:
            # Discriminator
            torch.save({
                    'iteration': iteration,
                    'model_state_dict':  self.discriminator.state_dict(),
                    'optimizer_state_dict': self.optimizer_d.state_dict(),
                    }, "saved_models/" + name + "_discriminator.pth")


    def lowest_tensorboard_report(self, iteration):
        self.writer.add_scalar('Loss/lowest-weight', self.generator_loss, iteration)      


    @torch.no_grad()
    def generate_lr(self):

        # If we directly use API, pytorch2.0 may raise an unknown bugs which is extremely slow on degradation pipeline
        os.system("python scripts/generate_lr_esr.py")


        # Assert check
        lr_paths = os.listdir(self.options["lr_dataset_path"])
        degrade_hr_paths = os.listdir(self.options["degrade_hr_dataset_path"])
        hr_paths = os.listdir(self.options["train_hr_dataset_path"])
        
        assert(len(lr_paths) == len(degrade_hr_paths))  
        assert(len(lr_paths) == len(hr_paths))