Spaces:
Running
on
T4
Running
on
T4
File size: 16,253 Bytes
561c629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# -*- coding: utf-8 -*-
import os, sys
import torch
import glob
import time, shutil
import math
import gc
from tqdm import tqdm
from collections import defaultdict
# torch module import
from torch.multiprocessing import Pool, Process, set_start_method
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
try:
set_start_method('spawn')
except RuntimeError:
pass
# import files from local folder
root_path = os.path.abspath('.')
sys.path.append(root_path)
from loss.gan_loss import GANLoss, MultiScaleGANLoss
from loss.pixel_loss import PixelLoss, L1_Charbonnier_loss
from loss.perceptual_loss import PerceptualLoss
from loss.anime_perceptual_loss import Anime_PerceptualLoss
from architecture.dataset import ImageDataset
from scripts.generate_lr_esr import generate_low_res_esr
# Mixed precision training
scaler = torch.cuda.amp.GradScaler()
class train_master(object):
def __init__(self, options, args, model_name, has_discriminator=False) -> None:
# General specs setup
self.args = args
self.model_name = model_name
self.options = options
self.has_discriminator = has_discriminator
# Loss init
self.loss_init()
# Generator
self.call_model() # generator + discriminator...
# Optimizer
self.learning_rate = options['start_learning_rate']
self.optimizer_g = torch.optim.Adam(self.generator.parameters(), lr=self.learning_rate, betas=(options["adam_beta1"], options["adam_beta2"]))
if self.has_discriminator:
self.optimizer_d = torch.optim.Adam(self.discriminator.parameters(), lr=self.learning_rate, betas=(self.options["adam_beta1"], self.options["adam_beta2"]))
# Train specs
self.start_iteration = 0
self.lowest_generator_loss = float("inf")
# Other auxiliary function
self.writer = SummaryWriter()
self.weight_store = defaultdict(int)
# Options setting
self.n_iterations = options['train_iterations']
self.batch_size = options['train_batch_size']
self.n_cpu = options['train_dataloader_workers']
def adjust_learning_rate(self, iteration_idx):
self.learning_rate = self.options['start_learning_rate']
end_iteration = self.options['train_iterations']
# Calculate a learning rate we need in real-time based on the iteration_idx
for idx in range(min(end_iteration, iteration_idx)//self.options['decay_iteration']):
idx = idx+1
if idx * self.options['decay_iteration'] in self.options['double_milestones']:
# double the learning rate in milestones
self.learning_rate = self.learning_rate * 2
else:
# else, try to multiply decay_gamma (when we decay, we won't upscale)
self.learning_rate = self.learning_rate * self.options['decay_gamma'] # should be divisible in all cases
# Change the learning rate to our target
for param_group in self.optimizer_g.param_groups:
param_group['lr'] = self.learning_rate
if self.has_discriminator:
# print("We didn't yet handle discriminator, but we think that it should be necessary")
for param_group in self.optimizer_d.param_groups:
param_group['lr'] = self.learning_rate
assert(self.learning_rate == self.optimizer_g.param_groups[0]['lr'])
def pixel_loss_load(self):
if self.options['pixel_loss'] == "L1":
self.cri_pix = PixelLoss().cuda()
elif self.options['pixel_loss'] == "L1_Charbonnier":
self.cri_pix = L1_Charbonnier_loss().cuda()
print("We are using {} loss".format(self.options['pixel_loss']))
def GAN_loss_load(self):
# parameter init
gan_loss_weight = self.options["gan_loss_weight"]
vgg_type = self.options['train_perceptual_vgg_type']
# Preceptual Loss
self.cri_pix = torch.nn.L1Loss().cuda()
self.cri_vgg_perceptual = PerceptualLoss(self.options['train_perceptual_layer_weights'], vgg_type, perceptual_weight=self.options["vgg_perceptual_loss_weight"]).cuda()
self.cri_danbooru_perceptual = Anime_PerceptualLoss(self.options["Danbooru_layer_weights"], perceptual_weight=self.options["danbooru_perceptual_loss_weight"]).cuda()
# GAN loss
if self.options['discriminator_type'] == "PatchDiscriminator":
self.cri_gan = MultiScaleGANLoss(gan_type="lsgan", loss_weight=gan_loss_weight).cuda() # already put in loss scaler for discriminator
elif self.options['discriminator_type'] == "UNetDiscriminator":
self.cri_gan = GANLoss(gan_type="vanilla", loss_weight=gan_loss_weight).cuda() # already put in loss scaler for discriminator
def tensorboard_epoch_draw(self, epoch_loss, epoch):
self.writer.add_scalar('Loss/train-Loss-Epoch', epoch_loss, epoch)
def master_run(self):
torch.backends.cudnn.benchmark = True
print("options are ", self.options)
# Generate a new LR dataset before doing anything (Must before Data Loading)
self.generate_lr()
# Load data
train_lr_paths = glob.glob(self.options["lr_dataset_path"] + "/*.*")
degrade_hr_paths = glob.glob(self.options["degrade_hr_dataset_path"] + "/*.*")
train_hr_paths = glob.glob(self.options["train_hr_dataset_path"] + "/*.*")
train_dataloader = DataLoader(ImageDataset(train_lr_paths, degrade_hr_paths, train_hr_paths), batch_size=self.batch_size, shuffle=True, num_workers=self.n_cpu) # ONLY LOAD HALF OF CPU AVAILABLE
dataset_length = len(os.listdir(self.options["train_hr_dataset_path"]))
# Check if we need to load weight
if self.args.auto_resume_best or self.args.auto_resume_closest:
self.load_weight(self.model_name)
elif self.args.pretrained_path != "": # If we give a pretrained path, we will use it (Should have in GAN training which uses pretrained L1 loss Network)
self.load_pretrained(self.model_name)
# Start iterating the epochs
start_epoch = self.start_iteration // math.ceil(dataset_length / self.options['train_batch_size'])
n_epochs = self.n_iterations // math.ceil(dataset_length / self.options['train_batch_size'])
iteration_idx = self.start_iteration # init the iteration index
self.batch_idx = iteration_idx
self.adjust_learning_rate(iteration_idx) # adjust the learning rate to the desired one at the beginning
for epoch in range(start_epoch, n_epochs):
print("This is epoch {} and the start iteration is {} with learning rate {}".format(epoch, iteration_idx, self.optimizer_g.param_groups[0]['lr']))
# Generate new lr degradation image
if epoch != start_epoch and epoch % self.options['degradate_generation_freq'] == 0:
self.generate_lr()
# Batch training
loss_per_epoch = 0.0
self.generator.train()
tqdm_bar = tqdm(train_dataloader, total=len(train_dataloader))
for batch_idx, imgs in enumerate(tqdm_bar):
imgs_lr = imgs["lr"].cuda()
imgs_degrade_hr = imgs["degrade_hr"].cuda()
imgs_hr = imgs["hr"].cuda()
# Used for each iteration
self.generator_loss = 0
self.single_iteration(imgs_lr, imgs_degrade_hr, imgs_hr)
# tensorboard and updates
self.tensorboard_report(iteration_idx)
loss_per_epoch += self.generator_loss.item()
################################# Save model weights and update hyperparameter ########################################
if self.lowest_generator_loss >= self.generator_loss.item():
self.lowest_generator_loss = self.generator_loss.item()
print("\nSave model with the lowest generator_loss among all iteartions ", self.lowest_generator_loss)
# Store the best
self.save_weight(iteration_idx, self.model_name+"_best", self.options)
self.lowest_tensorboard_report(iteration_idx)
# Update iteration and learning rate
iteration_idx += 1
self.batch_idx = iteration_idx
if iteration_idx % self.options['decay_iteration'] == 0:
self.adjust_learning_rate(iteration_idx) # adjust the learning rate to the desired one
print("Update the learning rate to {} at iteration {} ".format(self.optimizer_g.param_groups[0]['lr'], iteration_idx))
# Don't clean any memory here, it will dramatically slow down the code
# Per epoch report
self.tensorboard_epoch_draw( loss_per_epoch/batch_idx, epoch)
# Per epoch store weight
self.save_weight(iteration_idx, self.model_name+"_closest", self.options)
# Backup Checkpoint (Per 50 epoch)
if epoch % self.options['checkpoints_freq'] == 0 or epoch == n_epochs-1:
self.save_weight(iteration_idx, "checkpoints/" + self.model_name + "_epoch_" + str(epoch), self.options)
# Clean unneeded GPU cache (since we use subprocess for generate_lr(), so we need to kill them all)
torch.cuda.empty_cache()
time.sleep(5) # For enough time to clean the cache
def single_iteration(self, imgs_lr, imgs_degrade_hr, imgs_hr):
############################################# Generator section ##################################################
self.optimizer_g.zero_grad()
if self.has_discriminator:
for p in self.discriminator.parameters():
p.requires_grad = False
with torch.cuda.amp.autocast():
# generate high res image
gen_hr = self.generator(imgs_lr)
# all distinct loss will be stored in self.weight_store (per iteration)
self.calculate_loss(gen_hr, imgs_hr)
# backward needed loss
# self.loss_generator_total.backward()
# self.optimizer_g.step()
scaler.scale(self.generator_loss).backward() # loss backward
scaler.step(self.optimizer_g)
scaler.update()
###################################################################################################################
if self.has_discriminator:
##################################### Discriminator section #####################################################
for p in self.discriminator.parameters():
p.requires_grad = True
self.optimizer_d.zero_grad()
# discriminator real input
with torch.cuda.amp.autocast():
# We only need imgs_degrade_hr instead of imgs_hr in discriminator (Thus, we don't want to introduce usm in the discriminator)
real_d_preds = self.discriminator(imgs_degrade_hr)
l_d_real = self.cri_gan(real_d_preds, True, is_disc=True)
scaler.scale(l_d_real).backward()
# discriminator fake input
with torch.cuda.amp.autocast():
fake_d_preds = self.discriminator(gen_hr.detach().clone())
l_d_fake = self.cri_gan(fake_d_preds, False, is_disc=True)
scaler.scale(l_d_fake).backward()
# update
scaler.step(self.optimizer_d)
scaler.update()
##################################################################################################################
def load_pretrained(self, name):
# This part will load generator weight here, and it doesn't need to
weight_dir = self.args.pretrained_path
if not os.path.exists(weight_dir):
print("No such pretrained "+weight_dir+" file exists! We end the program! Please check the dir!")
os._exit(0)
checkpoint_g = torch.load(weight_dir)
if 'model_state_dict' in checkpoint_g:
self.generator.load_state_dict(checkpoint_g['model_state_dict'])
elif 'params_ema' in checkpoint_g:
self.generator.load_state_dict(checkpoint_g['params_ema'])
else:
raise NotImplementedError("We didn't cannot locate the weight of thie pretrained weight")
print(f"We will use pretrained "+name+" weight!")
def load_weight(self, head_prefix):
# Resume best or the closest weight available
head = head_prefix+"_best" if self.args.auto_resume_best else head_prefix+"_closest"
if os.path.exists("saved_models/"+head+"_generator.pth"):
print("We need to resume previous " + head + " weight")
# Generator
checkpoint_g = torch.load("saved_models/"+head+"_generator.pth")
self.generator.load_state_dict(checkpoint_g['model_state_dict'])
self.optimizer_g.load_state_dict(checkpoint_g['optimizer_state_dict'])
# Discriminator
if self.has_discriminator:
checkpoint_d = torch.load("saved_models/"+head+"_discriminator.pth")
self.discriminator.load_state_dict(checkpoint_d['model_state_dict'])
self.optimizer_d.load_state_dict(checkpoint_d['optimizer_state_dict'])
assert(checkpoint_g['iteration'] == checkpoint_d['iteration']) # must be the same for iteration in generator and discriminator
self.start_iteration = checkpoint_g['iteration'] + 1
# Prepare lowest generator
if os.path.exists("saved_models/" + head_prefix + "_best_generator.pth"):
checkpoint_g = torch.load("saved_models/" + head_prefix + "_best_generator.pth") # load generator weight
else:
print("There is no best weight exists!")
self.lowest_generator_loss = min(self.lowest_generator_loss, checkpoint_g["lowest_generator_weight"] )
print("The lowest generator loss at the beginning is ", self.lowest_generator_loss)
else:
print(f"No saved_models/"+head+"_generator.pth " or " saved_models/"+head+"_discriminator.pth exists")
print(f"We will start from the iteration {self.start_iteration}")
def save_weight(self, iteration, name, opt):
# Generator
torch.save({
'iteration': iteration,
'model_state_dict': self.generator.state_dict(),
'optimizer_state_dict': self.optimizer_g.state_dict(),
'lowest_generator_weight': self.lowest_generator_loss,
'opt': opt,
}, "saved_models/" + name + "_generator.pth")
# 'pixel_loss': self.weight_store["pixel_loss"],
# 'perceptual_loss': self.weight_store['perceptual_loss'],
# 'gan_loss': self.weight_store["gan_loss"],
if self.has_discriminator:
# Discriminator
torch.save({
'iteration': iteration,
'model_state_dict': self.discriminator.state_dict(),
'optimizer_state_dict': self.optimizer_d.state_dict(),
}, "saved_models/" + name + "_discriminator.pth")
def lowest_tensorboard_report(self, iteration):
self.writer.add_scalar('Loss/lowest-weight', self.generator_loss, iteration)
@torch.no_grad()
def generate_lr(self):
# If we directly use API, pytorch2.0 may raise an unknown bugs which is extremely slow on degradation pipeline
os.system("python scripts/generate_lr_esr.py")
# Assert check
lr_paths = os.listdir(self.options["lr_dataset_path"])
degrade_hr_paths = os.listdir(self.options["degrade_hr_dataset_path"])
hr_paths = os.listdir(self.options["train_hr_dataset_path"])
assert(len(lr_paths) == len(degrade_hr_paths))
assert(len(lr_paths) == len(hr_paths))
|