File size: 5,039 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F



class slam(nn.Module):
    def __init__(self, spatial_dim):
        super(slam,self).__init__()
        self.spatial_dim = spatial_dim
        self.linear = nn.Sequential(
             nn.Linear(spatial_dim**2,512),
             nn.ReLU(),
             nn.Linear(512,1),
             nn.Sigmoid()
        )

    def forward(self, feature):
        n,c,h,w = feature.shape
        if (h != self.spatial_dim):
            x = F.interpolate(feature,size=(self.spatial_dim,self.spatial_dim),mode= "bilinear", align_corners=True)
        else:
            x = feature


        x = x.view(n,c,-1)
        x = self.linear(x)
        x = x.unsqueeze(dim =3)
        out = x.expand_as(feature)*feature

        return out
        

class to_map(nn.Module):
    def __init__(self,channels):
        super(to_map,self).__init__()
        self.to_map = nn.Sequential(
            nn.Conv2d(in_channels=channels,out_channels=1, kernel_size=1,stride=1),
            nn.Sigmoid()
        )
        
    def forward(self,feature):
        return self.to_map(feature)
    
        
class conv_bn_relu(nn.Module):
    def __init__(self,in_channels, out_channels, kernel_size = 3, padding = 1, stride = 1):
        super(conv_bn_relu,self).__init__()
        self.conv = nn.Conv2d(in_channels= in_channels, out_channels= out_channels, kernel_size= kernel_size, padding= padding, stride = stride)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU()
        
    def forward(self,x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x

        

class up_conv_bn_relu(nn.Module):
    def __init__(self,up_size, in_channels, out_channels = 64, kernal_size = 1, padding =0, stride = 1):
        super(up_conv_bn_relu,self).__init__()
        self.upSample = nn.Upsample(size = (up_size,up_size),mode="bilinear",align_corners=True)
        self.conv = nn.Conv2d(in_channels=in_channels,out_channels=out_channels,kernel_size = kernal_size, stride = stride, padding= padding)
        self.bn = nn.BatchNorm2d(num_features=out_channels)
        self.act = nn.ReLU()
        
    def forward(self,x):
        x = self.upSample(x)
        x = self.conv(x)
        x = self.bn(x)
        x = self.act(x)
        return x



class ICNet(nn.Module):
    def __init__(self, is_pretrain = True, size1 = 512, size2 = 256):
        super(ICNet,self).__init__()
        resnet18Pretrained1 = torchvision.models.resnet18(pretrained= is_pretrain)
        resnet18Pretrained2 = torchvision.models.resnet18(pretrained= is_pretrain)
        
        self.size1 = size1
        self.size2 = size2
        
        ## detail branch
        self.b1_1 = nn.Sequential(*list(resnet18Pretrained1.children())[:5])   
        self.b1_1_slam = slam(32)
    
        self.b1_2 = list(resnet18Pretrained1.children())[5]   
        self.b1_2_slam = slam(32)

        ## context branch
        self.b2_1 = nn.Sequential(*list(resnet18Pretrained2.children())[:5])
        self.b2_1_slam = slam(32)
        
        self.b2_2 = list(resnet18Pretrained2.children())[5]
        self.b2_2_slam = slam(32)
    
        self.b2_3 = list(resnet18Pretrained2.children())[6]
        self.b2_3_slam = slam(16)
        
        self.b2_4 = list(resnet18Pretrained2.children())[7]
        self.b2_4_slam = slam(8)

        ## upsample
        self.upsize = size1 // 8
        self.up1 = up_conv_bn_relu(up_size = self.upsize, in_channels = 128, out_channels = 256)
        self.up2 = up_conv_bn_relu(up_size = self.upsize, in_channels = 512, out_channels = 256)
        
        ## map prediction head
        self.to_map_f = conv_bn_relu(256*2,256*2)
        self.to_map_f_slam = slam(32)
        self.to_map = to_map(256*2)
        
        ## score prediction head
        self.to_score_f = conv_bn_relu(256*2,256*2)
        self.to_score_f_slam = slam(32)
        self.head = nn.Sequential(
            nn.Linear(256*2,512),
            nn.ReLU(),
            nn.Linear(512,1),
            nn.Sigmoid()
        )
        self.avgpool = nn.AdaptiveAvgPool2d((1,1))
        
        
    def forward(self,x1):
        assert(x1.shape[2] == x1.shape[3] == self.size1)
        x2 = F.interpolate(x1, size= (self.size2,self.size2), mode = "bilinear", align_corners= True)

        x1 = self.b1_2_slam(self.b1_2(self.b1_1_slam(self.b1_1(x1))))
        x2 = self.b2_2_slam(self.b2_2(self.b2_1_slam(self.b2_1(x2))))
        x2 = self.b2_4_slam(self.b2_4(self.b2_3_slam(self.b2_3(x2))))

        
        x1 = self.up1(x1)
        x2 = self.up2(x2)
        x_cat = torch.cat((x1,x2),dim = 1)
        
        cly_map = self.to_map(self.to_map_f_slam(self.to_map_f(x_cat)))
        
        score_feature = self.to_score_f_slam(self.to_score_f(x_cat))
        score_feature = self.avgpool(score_feature)
        score_feature = score_feature.squeeze()
        score = self.head(score_feature)
        score = score.squeeze()
    
        return score,cly_map