Spaces:
Running
on
T4
Running
on
T4
File size: 8,979 Bytes
561c629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# -*- coding: utf-8 -*-
from torch import nn as nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm
import torch
import functools
class UNetDiscriminatorSN(nn.Module):
"""Defines a U-Net discriminator with spectral normalization (SN)
It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data.
Arg:
num_in_ch (int): Channel number of inputs. Default: 3.
num_feat (int): Channel number of base intermediate features. Default: 64.
skip_connection (bool): Whether to use skip connections between U-Net. Default: True.
"""
def __init__(self, num_in_ch, num_feat=64, skip_connection=True):
super(UNetDiscriminatorSN, self).__init__()
self.skip_connection = skip_connection
norm = spectral_norm
# the first convolution
self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1)
# downsample
self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False))
self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False))
self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False))
# upsample
self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False))
self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False))
self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False))
# extra convolutions
self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False))
self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1)
def forward(self, x):
# downsample
x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True)
x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True)
x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True)
x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True)
# upsample
x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False)
x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True)
if self.skip_connection:
x4 = x4 + x2
x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False)
x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True)
if self.skip_connection:
x5 = x5 + x1
x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False)
x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True)
if self.skip_connection:
x6 = x6 + x0
# extra convolutions
out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True)
out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True)
out = self.conv9(out)
return out
def get_conv_layer(input_nc, ndf, kernel_size, stride, padding, bias=True, use_sn=False):
if not use_sn:
return nn.Conv2d(input_nc, ndf, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)
return spectral_norm(nn.Conv2d(input_nc, ndf, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias))
class PatchDiscriminator(nn.Module):
"""Defines a PatchGAN discriminator, the receptive field of default config is 70x70.
Args:
use_sn (bool): Use spectra_norm or not, if use_sn is True, then norm_type should be none.
"""
def __init__(self,
num_in_ch,
num_feat=64,
num_layers=3,
max_nf_mult=8,
norm_type='batch',
use_sigmoid=False,
use_sn=False):
super(PatchDiscriminator, self).__init__()
norm_layer = self._get_norm_layer(norm_type)
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func != nn.BatchNorm2d
else:
use_bias = norm_layer != nn.BatchNorm2d
kw = 4
padw = 1
sequence = [
get_conv_layer(num_in_ch, num_feat, kernel_size=kw, stride=2, padding=padw, use_sn=use_sn),
nn.LeakyReLU(0.2, True)
]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, num_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2**n, max_nf_mult)
sequence += [
get_conv_layer(
num_feat * nf_mult_prev,
num_feat * nf_mult,
kernel_size=kw,
stride=2,
padding=padw,
bias=use_bias,
use_sn=use_sn),
norm_layer(num_feat * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2**num_layers, max_nf_mult)
sequence += [
get_conv_layer(
num_feat * nf_mult_prev,
num_feat * nf_mult,
kernel_size=kw,
stride=1,
padding=padw,
bias=use_bias,
use_sn=use_sn),
norm_layer(num_feat * nf_mult),
nn.LeakyReLU(0.2, True)
]
# output 1 channel prediction map 我觉得这个应该就是pixel by pixel的feedback反馈
sequence += [get_conv_layer(num_feat * nf_mult, 1, kernel_size=kw, stride=1, padding=padw, use_sn=use_sn)]
if use_sigmoid:
sequence += [nn.Sigmoid()]
self.model = nn.Sequential(*sequence)
def _get_norm_layer(self, norm_type='batch'):
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False)
elif norm_type == 'batchnorm2d':
norm_layer = nn.BatchNorm2d
elif norm_type == 'none':
norm_layer = nn.Identity
else:
raise NotImplementedError(f'normalization layer [{norm_type}] is not found')
return norm_layer
def forward(self, x):
return self.model(x)
class MultiScaleDiscriminator(nn.Module):
"""Define a multi-scale discriminator, each discriminator is a instance of PatchDiscriminator.
Args:
num_layers (int or list): If the type of this variable is int, then degrade to PatchDiscriminator.
If the type of this variable is list, then the length of the list is
the number of discriminators.
use_downscale (bool): Progressive downscale the input to feed into different discriminators.
If set to True, then the discriminators are usually the same.
"""
def __init__(self,
num_in_ch,
num_feat=64,
num_layers=[3, 3, 3],
max_nf_mult=8,
norm_type='none',
use_sigmoid=False,
use_sn=True,
use_downscale=True):
super(MultiScaleDiscriminator, self).__init__()
if isinstance(num_layers, int):
num_layers = [num_layers]
# check whether the discriminators are the same
if use_downscale:
assert len(set(num_layers)) == 1
self.use_downscale = use_downscale
self.num_dis = len(num_layers)
self.dis_list = nn.ModuleList()
for nl in num_layers:
self.dis_list.append(
PatchDiscriminator(
num_in_ch,
num_feat=num_feat,
num_layers=nl,
max_nf_mult=max_nf_mult,
norm_type=norm_type,
use_sigmoid=use_sigmoid,
use_sn=use_sn,
))
def forward(self, x):
outs = []
h, w = x.size()[2:]
y = x
for i in range(self.num_dis):
if i != 0 and self.use_downscale:
y = F.interpolate(y, size=(h // 2, w // 2), mode='bilinear', align_corners=True)
h, w = y.size()[2:]
outs.append(self.dis_list[i](y))
return outs
def main():
from pthflops import count_ops
from torchsummary import summary
model = UNetDiscriminatorSN(3)
pytorch_total_params = sum(p.numel() for p in model.parameters())
# Create a network and a corresponding input
device = 'cuda'
inp = torch.rand(1, 3, 400, 400)
# Count the number of FLOPs
count_ops(model, inp)
summary(model.cuda(), (3, 400, 400), batch_size=1)
# print(f"pathGAN has param {pytorch_total_params//1000} K params")
if __name__ == "__main__":
main() |