File size: 19,395 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
from math import prod
from typing import Tuple

import numpy as np
import torch
from timm.models.layers import to_2tuple


def bchw_to_bhwc(x: torch.Tensor) -> torch.Tensor:
    """Permutes a tensor from the shape (B, C, H, W) to (B, H, W, C)."""
    return x.permute(0, 2, 3, 1)


def bhwc_to_bchw(x: torch.Tensor) -> torch.Tensor:
    """Permutes a tensor from the shape (B, H, W, C) to (B, C, H, W)."""
    return x.permute(0, 3, 1, 2)


def bchw_to_blc(x: torch.Tensor) -> torch.Tensor:
    """Rearrange a tensor from the shape (B, C, H, W) to (B, L, C)."""
    return x.flatten(2).transpose(1, 2)


def blc_to_bchw(x: torch.Tensor, x_size: Tuple) -> torch.Tensor:
    """Rearrange a tensor from the shape (B, L, C) to (B, C, H, W)."""
    B, L, C = x.shape
    return x.transpose(1, 2).view(B, C, *x_size)


def blc_to_bhwc(x: torch.Tensor, x_size: Tuple) -> torch.Tensor:
    """Rearrange a tensor from the shape (B, L, C) to (B, H, W, C)."""
    B, L, C = x.shape
    return x.view(B, *x_size, C)


def window_partition(x, window_size: Tuple[int, int]):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.view(
        B, H // window_size[0], window_size[0], W // window_size[1], window_size[1], C
    )
    windows = (
        x.permute(0, 1, 3, 2, 4, 5)
        .contiguous()
        .view(-1, window_size[0], window_size[1], C)
    )
    return windows


def window_reverse(windows, window_size: Tuple[int, int], img_size: Tuple[int, int]):
    """
    Args:
        windows: (num_windows * B, window_size[0], window_size[1], C)
        window_size (Tuple[int, int]): Window size
        img_size (Tuple[int, int]): Image size

    Returns:
        x: (B, H, W, C)
    """
    H, W = img_size
    B = int(windows.shape[0] / (H * W / window_size[0] / window_size[1]))
    x = windows.view(
        B, H // window_size[0], W // window_size[1], window_size[0], window_size[1], -1
    )
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return x


def _fill_window(input_resolution, window_size, shift_size=None):
    if shift_size is None:
        shift_size = [s // 2 for s in window_size]

    img_mask = torch.zeros((1, *input_resolution, 1))  # 1 H W 1
    h_slices = (
        slice(0, -window_size[0]),
        slice(-window_size[0], -shift_size[0]),
        slice(-shift_size[0], None),
    )
    w_slices = (
        slice(0, -window_size[1]),
        slice(-window_size[1], -shift_size[1]),
        slice(-shift_size[1], None),
    )
    cnt = 0
    for h in h_slices:
        for w in w_slices:
            img_mask[:, h, w, :] = cnt
            cnt += 1

    mask_windows = window_partition(img_mask, window_size)
    # nW, window_size, window_size, 1
    mask_windows = mask_windows.view(-1, prod(window_size))
    return mask_windows


#####################################
# Different versions of the functions
# 1) Swin Transformer, SwinIR, Square window attention in GRL;
# 2) Early development of the decomposition-based efficient attention mechanism (efficient_win_attn.py);
# 3) GRL. Window-anchor attention mechanism.
# 1) & 3) are still useful
#####################################


def calculate_mask(input_resolution, window_size, shift_size):
    """
    Use case: 1)
    """
    # calculate attention mask for SW-MSA
    if isinstance(shift_size, int):
        shift_size = to_2tuple(shift_size)
    mask_windows = _fill_window(input_resolution, window_size, shift_size)

    attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
        attn_mask == 0, float(0.0)
    )  # nW, window_size**2, window_size**2

    return attn_mask


def calculate_mask_all(
    input_resolution,
    window_size,
    shift_size,
    anchor_window_down_factor=1,
    window_to_anchor=True,
):
    """
    Use case: 3)
    """
    # calculate attention mask for SW-MSA
    anchor_resolution = [s // anchor_window_down_factor for s in input_resolution]
    aws = [s // anchor_window_down_factor for s in window_size]
    anchor_shift = [s // anchor_window_down_factor for s in shift_size]

    # mask of window1: nW, Wh**Ww
    mask_windows = _fill_window(input_resolution, window_size, shift_size)
    # mask of window2: nW, AWh*AWw
    mask_anchor = _fill_window(anchor_resolution, aws, anchor_shift)

    if window_to_anchor:
        attn_mask = mask_windows.unsqueeze(2) - mask_anchor.unsqueeze(1)
    else:
        attn_mask = mask_anchor.unsqueeze(2) - mask_windows.unsqueeze(1)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
        attn_mask == 0, float(0.0)
    )  # nW, Wh**Ww, AWh*AWw

    return attn_mask


def calculate_win_mask(
    input_resolution1, input_resolution2, window_size1, window_size2
):
    """
    Use case: 2)
    """
    # calculate attention mask for SW-MSA

    # mask of window1: nW, Wh**Ww
    mask_windows1 = _fill_window(input_resolution1, window_size1)
    # mask of window2: nW, AWh*AWw
    mask_windows2 = _fill_window(input_resolution2, window_size2)

    attn_mask = mask_windows1.unsqueeze(2) - mask_windows2.unsqueeze(1)
    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
        attn_mask == 0, float(0.0)
    )  # nW, Wh**Ww, AWh*AWw

    return attn_mask


def _get_meshgrid_coords(start_coords, end_coords):
    coord_h = torch.arange(start_coords[0], end_coords[0])
    coord_w = torch.arange(start_coords[1], end_coords[1])
    coords = torch.stack(torch.meshgrid([coord_h, coord_w], indexing="ij"))  # 2, Wh, Ww
    coords = torch.flatten(coords, 1)  # 2, Wh*Ww
    return coords


def get_relative_coords_table(
    window_size, pretrained_window_size=[0, 0], anchor_window_down_factor=1
):
    """
    Use case: 1)
    """
    # get relative_coords_table
    ws = window_size
    aws = [w // anchor_window_down_factor for w in window_size]
    pws = pretrained_window_size
    paws = [w // anchor_window_down_factor for w in pretrained_window_size]

    ts = [(w1 + w2) // 2 for w1, w2 in zip(ws, aws)]
    pts = [(w1 + w2) // 2 for w1, w2 in zip(pws, paws)]

    # TODO: pretrained window size and pretrained anchor window size is only used here.
    # TODO: Investigate whether it is really important to use this setting when finetuning large window size
    # TODO: based on pretrained weights with small window size.

    coord_h = torch.arange(-(ts[0] - 1), ts[0], dtype=torch.float32)
    coord_w = torch.arange(-(ts[1] - 1), ts[1], dtype=torch.float32)
    table = torch.stack(torch.meshgrid([coord_h, coord_w], indexing="ij")).permute(
        1, 2, 0
    )
    table = table.contiguous().unsqueeze(0)  # 1, Wh+AWh-1, Ww+AWw-1, 2
    if pts[0] > 0:
        table[:, :, :, 0] /= pts[0] - 1
        table[:, :, :, 1] /= pts[1] - 1
    else:
        table[:, :, :, 0] /= ts[0] - 1
        table[:, :, :, 1] /= ts[1] - 1
    table *= 8  # normalize to -8, 8
    table = torch.sign(table) * torch.log2(torch.abs(table) + 1.0) / np.log2(8)
    return table


def get_relative_coords_table_all(
    window_size, pretrained_window_size=[0, 0], anchor_window_down_factor=1
):
    """
    Use case: 3)

    Support all window shapes.
    Args:
        window_size:
        pretrained_window_size:
        anchor_window_down_factor:

    Returns:

    """
    # get relative_coords_table
    ws = window_size
    aws = [w // anchor_window_down_factor for w in window_size]
    pws = pretrained_window_size
    paws = [w // anchor_window_down_factor for w in pretrained_window_size]

    # positive table size: (Ww - 1) - (Ww - AWw) // 2
    ts_p = [w1 - 1 - (w1 - w2) // 2 for w1, w2 in zip(ws, aws)]
    # negative table size: -(AWw - 1) - (Ww - AWw) // 2
    ts_n = [-(w2 - 1) - (w1 - w2) // 2 for w1, w2 in zip(ws, aws)]
    pts = [w1 - 1 - (w1 - w2) // 2 for w1, w2 in zip(pws, paws)]

    # TODO: pretrained window size and pretrained anchor window size is only used here.
    # TODO: Investigate whether it is really important to use this setting when finetuning large window size
    # TODO: based on pretrained weights with small window size.

    coord_h = torch.arange(ts_n[0], ts_p[0] + 1, dtype=torch.float32)
    coord_w = torch.arange(ts_n[1], ts_p[1] + 1, dtype=torch.float32)
    table = torch.stack(torch.meshgrid([coord_h, coord_w], indexing="ij")).permute(
        1, 2, 0
    )
    table = table.contiguous().unsqueeze(0)  # 1, Wh+AWh-1, Ww+AWw-1, 2
    if pts[0] > 0:
        table[:, :, :, 0] /= pts[0]
        table[:, :, :, 1] /= pts[1]
    else:
        table[:, :, :, 0] /= ts_p[0]
        table[:, :, :, 1] /= ts_p[1]
    table *= 8  # normalize to -8, 8
    table = torch.sign(table) * torch.log2(torch.abs(table) + 1.0) / np.log2(8)
    # 1, Wh+AWh-1, Ww+AWw-1, 2
    return table


def coords_diff(coords1, coords2, max_diff):
    # The coordinates starts from (-start_coord[0], -start_coord[1])
    coords = coords1[:, :, None] - coords2[:, None, :]  # 2, Wh*Ww, AWh*AWw
    coords = coords.permute(1, 2, 0).contiguous()  # Wh*Ww, AWh*AWw, 2
    coords[:, :, 0] += max_diff[0] - 1  # shift to start from 0
    coords[:, :, 1] += max_diff[1] - 1
    coords[:, :, 0] *= 2 * max_diff[1] - 1
    idx = coords.sum(-1)  # Wh*Ww, AWh*AWw
    return idx


def get_relative_position_index(
    window_size, anchor_window_down_factor=1, window_to_anchor=True
):
    """
    Use case: 1)
    """
    # get pair-wise relative position index for each token inside the window
    ws = window_size
    aws = [w // anchor_window_down_factor for w in window_size]
    coords_anchor_end = [(w1 + w2) // 2 for w1, w2 in zip(ws, aws)]
    coords_anchor_start = [(w1 - w2) // 2 for w1, w2 in zip(ws, aws)]

    coords = _get_meshgrid_coords((0, 0), window_size)  # 2, Wh*Ww
    coords_anchor = _get_meshgrid_coords(coords_anchor_start, coords_anchor_end)
    # 2, AWh*AWw

    if window_to_anchor:
        idx = coords_diff(coords, coords_anchor, max_diff=coords_anchor_end)
    else:
        idx = coords_diff(coords_anchor, coords, max_diff=coords_anchor_end)
    return idx  # Wh*Ww, AWh*AWw or AWh*AWw, Wh*Ww


def coords_diff_odd(coords1, coords2, start_coord, max_diff):
    # The coordinates starts from (-start_coord[0], -start_coord[1])
    coords = coords1[:, :, None] - coords2[:, None, :]  # 2, Wh*Ww, AWh*AWw
    coords = coords.permute(1, 2, 0).contiguous()  # Wh*Ww, AWh*AWw, 2
    coords[:, :, 0] += start_coord[0]  # shift to start from 0
    coords[:, :, 1] += start_coord[1]
    coords[:, :, 0] *= max_diff
    idx = coords.sum(-1)  # Wh*Ww, AWh*AWw
    return idx


def get_relative_position_index_all(
    window_size, anchor_window_down_factor=1, window_to_anchor=True
):
    """
    Use case: 3)
    Support all window shapes:
        square window - square window
        rectangular window - rectangular window
        window - anchor
        anchor - window
        [8, 8] - [8, 8]
        [4, 86] - [2, 43]
    """
    # get pair-wise relative position index for each token inside the window
    ws = window_size
    aws = [w // anchor_window_down_factor for w in window_size]
    coords_anchor_start = [(w1 - w2) // 2 for w1, w2 in zip(ws, aws)]
    coords_anchor_end = [s + w2 for s, w2 in zip(coords_anchor_start, aws)]

    coords = _get_meshgrid_coords((0, 0), window_size)  # 2, Wh*Ww
    coords_anchor = _get_meshgrid_coords(coords_anchor_start, coords_anchor_end)
    # 2, AWh*AWw

    max_horizontal_diff = aws[1] + ws[1] - 1
    if window_to_anchor:
        offset = [w2 + s - 1 for s, w2 in zip(coords_anchor_start, aws)]
        idx = coords_diff_odd(coords, coords_anchor, offset, max_horizontal_diff)
    else:
        offset = [w1 - s - 1 for s, w1 in zip(coords_anchor_start, ws)]
        idx = coords_diff_odd(coords_anchor, coords, offset, max_horizontal_diff)
    return idx  # Wh*Ww, AWh*AWw or AWh*AWw, Wh*Ww


def get_relative_position_index_simple(
    window_size, anchor_window_down_factor=1, window_to_anchor=True
):
    """
    Use case: 3)
    This is a simplified version of get_relative_position_index_all
    The start coordinate of anchor window is also (0, 0)
    get pair-wise relative position index for each token inside the window
    """
    ws = window_size
    aws = [w // anchor_window_down_factor for w in window_size]

    coords = _get_meshgrid_coords((0, 0), window_size)  # 2, Wh*Ww
    coords_anchor = _get_meshgrid_coords((0, 0), aws)
    # 2, AWh*AWw

    max_horizontal_diff = aws[1] + ws[1] - 1
    if window_to_anchor:
        offset = [w2 - 1 for w2 in aws]
        idx = coords_diff_odd(coords, coords_anchor, offset, max_horizontal_diff)
    else:
        offset = [w1 - 1 for w1 in ws]
        idx = coords_diff_odd(coords_anchor, coords, offset, max_horizontal_diff)
    return idx  # Wh*Ww, AWh*AWw or AWh*AWw, Wh*Ww


# def get_relative_position_index(window_size):
#     # This is a very early version
#     # get pair-wise relative position index for each token inside the window
#     coords = _get_meshgrid_coords(start_coords=(0, 0), end_coords=window_size)

#     coords = coords[:, :, None] - coords[:, None, :]  # 2, Wh*Ww, Wh*Ww
#     coords = coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
#     coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
#     coords[:, :, 1] += window_size[1] - 1
#     coords[:, :, 0] *= 2 * window_size[1] - 1
#     idx = coords.sum(-1)  # Wh*Ww, Wh*Ww
#     return idx


def get_relative_win_position_index(window_size, anchor_window_size):
    """
    Use case: 2)
    """
    # get pair-wise relative position index for each token inside the window
    ws = window_size
    aws = anchor_window_size
    coords_anchor_end = [(w1 + w2) // 2 for w1, w2 in zip(ws, aws)]
    coords_anchor_start = [(w1 - w2) // 2 for w1, w2 in zip(ws, aws)]

    coords = _get_meshgrid_coords((0, 0), window_size)  # 2, Wh*Ww
    coords_anchor = _get_meshgrid_coords(coords_anchor_start, coords_anchor_end)
    # 2, AWh*AWw
    coords = coords[:, :, None] - coords_anchor[:, None, :]  # 2, Wh*Ww, AWh*AWw
    coords = coords.permute(1, 2, 0).contiguous()  # Wh*Ww, AWh*AWw, 2
    coords[:, :, 0] += coords_anchor_end[0] - 1  # shift to start from 0
    coords[:, :, 1] += coords_anchor_end[1] - 1
    coords[:, :, 0] *= 2 * coords_anchor_end[1] - 1
    idx = coords.sum(-1)  # Wh*Ww, AWh*AWw
    return idx


# def get_relative_coords_table(window_size, pretrained_window_size):
#     # This is a very early version
#     # get relative_coords_table
#     ws = window_size
#     pws = pretrained_window_size
#     coord_h = torch.arange(-(ws[0] - 1), ws[0], dtype=torch.float32)
#     coord_w = torch.arange(-(ws[1] - 1), ws[1], dtype=torch.float32)
#     table = torch.stack(torch.meshgrid([coord_h, coord_w], indexing='ij')).permute(1, 2, 0)
#     table = table.contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2
#     if pws[0] > 0:
#         table[:, :, :, 0] /= pws[0] - 1
#         table[:, :, :, 1] /= pws[1] - 1
#     else:
#         table[:, :, :, 0] /= ws[0] - 1
#         table[:, :, :, 1] /= ws[1] - 1
#     table *= 8  # normalize to -8, 8
#     table = torch.sign(table) * torch.log2(torch.abs(table) + 1.0) / np.log2(8)
#     return table


def get_relative_win_coords_table(
    window_size,
    anchor_window_size,
    pretrained_window_size=[0, 0],
    pretrained_anchor_window_size=[0, 0],
):
    """
    Use case: 2)
    """
    # get relative_coords_table
    ws = window_size
    aws = anchor_window_size
    pws = pretrained_window_size
    paws = pretrained_anchor_window_size

    # TODO: pretrained window size and pretrained anchor window size is only used here.
    # TODO: Investigate whether it is really important to use this setting when finetuning large window size
    # TODO: based on pretrained weights with small window size.

    table_size = [(wsi + awsi) // 2 for wsi, awsi in zip(ws, aws)]
    table_size_pretrained = [(pwsi + pawsi) // 2 for pwsi, pawsi in zip(pws, paws)]
    coord_h = torch.arange(-(table_size[0] - 1), table_size[0], dtype=torch.float32)
    coord_w = torch.arange(-(table_size[1] - 1), table_size[1], dtype=torch.float32)
    table = torch.stack(torch.meshgrid([coord_h, coord_w], indexing="ij")).permute(
        1, 2, 0
    )
    table = table.contiguous().unsqueeze(0)  # 1, Wh+AWh-1, Ww+AWw-1, 2
    if table_size_pretrained[0] > 0:
        table[:, :, :, 0] /= table_size_pretrained[0] - 1
        table[:, :, :, 1] /= table_size_pretrained[1] - 1
    else:
        table[:, :, :, 0] /= table_size[0] - 1
        table[:, :, :, 1] /= table_size[1] - 1
    table *= 8  # normalize to -8, 8
    table = torch.sign(table) * torch.log2(torch.abs(table) + 1.0) / np.log2(8)
    return table


if __name__ == "__main__":
    table = get_relative_coords_table_all((4, 86), anchor_window_down_factor=2)
    table = table.view(-1, 2)
    index1 = get_relative_position_index_all((4, 86), 2, False)
    index2 = get_relative_position_index_simple((4, 86), 2, False)
    print(index2)
    index3 = get_relative_position_index_all((4, 86), 2)
    index4 = get_relative_position_index_simple((4, 86), 2)
    print(index4)
    print(
        table.shape,
        index2.shape,
        index2.max(),
        index2.min(),
        index4.shape,
        index4.max(),
        index4.min(),
        torch.allclose(index1, index2),
        torch.allclose(index3, index4),
    )

    table = get_relative_coords_table_all((4, 86), anchor_window_down_factor=1)
    table = table.view(-1, 2)
    index1 = get_relative_position_index_all((4, 86), 1, False)
    index2 = get_relative_position_index_simple((4, 86), 1, False)
    # print(index1)
    index3 = get_relative_position_index_all((4, 86), 1)
    index4 = get_relative_position_index_simple((4, 86), 1)
    # print(index2)
    print(
        table.shape,
        index2.shape,
        index2.max(),
        index2.min(),
        index4.shape,
        index4.max(),
        index4.min(),
        torch.allclose(index1, index2),
        torch.allclose(index3, index4),
    )

    table = get_relative_coords_table_all((8, 8), anchor_window_down_factor=2)
    table = table.view(-1, 2)
    index1 = get_relative_position_index_all((8, 8), 2, False)
    index2 = get_relative_position_index_simple((8, 8), 2, False)
    # print(index1)
    index3 = get_relative_position_index_all((8, 8), 2)
    index4 = get_relative_position_index_simple((8, 8), 2)
    # print(index2)
    print(
        table.shape,
        index2.shape,
        index2.max(),
        index2.min(),
        index4.shape,
        index4.max(),
        index4.min(),
        torch.allclose(index1, index2),
        torch.allclose(index3, index4),
    )

    table = get_relative_coords_table_all((8, 8), anchor_window_down_factor=1)
    table = table.view(-1, 2)
    index1 = get_relative_position_index_all((8, 8), 1, False)
    index2 = get_relative_position_index_simple((8, 8), 1, False)
    # print(index1)
    index3 = get_relative_position_index_all((8, 8), 1)
    index4 = get_relative_position_index_simple((8, 8), 1)
    # print(index2)
    print(
        table.shape,
        index2.shape,
        index2.max(),
        index2.min(),
        index4.shape,
        index4.max(),
        index4.min(),
        torch.allclose(index1, index2),
        torch.allclose(index3, index4),
    )