Highthoughts commited on
Commit
461b215
·
1 Parent(s): df5d87b

Initial commit

Browse files
Files changed (1) hide show
  1. app.py +52 -57
app.py CHANGED
@@ -1,93 +1,88 @@
1
  import streamlit as st
2
- from llama_index import VectorStoreIndex, SimpleDirectoryReader, Settings
3
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
  from llama_index.legacy.callbacks import CallbackManager
5
  from llama_index.llms.openai_like import OpenAILike
6
 
7
- # Callback manager
 
 
 
 
 
8
  callback_manager = CallbackManager()
9
 
10
- # API 信息
11
- api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
12
  model = "internlm2.5-latest"
13
- api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI4MDAwNzM0OCIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczNzczMjUwMCwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTk4MjEyMTUyNzEiLCJ1dWlkIjoiZjc2MDM3NTctMTU2Yy00MTM3LWE1YmEtNTk3MDljODRiNDRkIiwiZW1haWwiOiIiLCJleHAiOjE3NTMyODQ1MDB9.4zD9ixAv1JdP_AJLQhNW3tCgzCGquW6eFcbV0XNqmqCZ0pL5A4hIPVA0zeFleg-n04O1IsyIZZ0rmkATZ1V6_A" # 替换为你的真实 API Key
 
 
 
 
14
 
15
- # 初始化 LLM
16
- llm = OpenAILike(
17
- model=model,
18
- api_base=api_base_url,
19
- api_key=api_key,
20
- is_chat_model=True,
21
- callback_manager=callback_manager,
22
- )
23
 
24
- # Streamlit 页面配置
25
- st.set_page_config(page_title="Llama Index Demo", page_icon="🦜🔗")
26
- st.title("Llama Index Demo")
 
27
 
28
  # 初始化模型
29
  @st.cache_resource
30
  def init_models():
31
- try:
32
- # 使用 Hugging Face Hub 的公开模型
33
- embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2")
34
- Settings.embed_model = embed_model
35
 
36
- # 初始化 LLM
37
- Settings.llm = llm
38
 
39
- # 加载文档数据(可以替换为你自己的数据路径或逻辑)
40
- documents = SimpleDirectoryReader("./data").load_data()
41
- index = VectorStoreIndex.from_documents(documents)
42
 
43
- # 创建查询引擎
44
- query_engine = index.as_query_engine()
45
- return query_engine
46
- except Exception as e:
47
- st.error(f"模型初始化失败:{e}")
48
- return None
49
 
50
  # 检查是否需要初始化模型
51
  if 'query_engine' not in st.session_state:
52
  st.session_state['query_engine'] = init_models()
53
 
54
- # 模型查询函数
55
  def greet2(question):
56
- query_engine = st.session_state['query_engine']
57
- if query_engine:
58
- response = query_engine.query(question)
59
- return response.response # 确保返回的内容是字符串
60
- else:
61
- return "模型初始化失败,请检查环境配置。"
62
-
63
- # 清空聊天记录
64
- def clear_chat_history():
65
- st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
66
 
67
- # 初始化聊天记录
68
- if "messages" not in st.session_state:
69
- st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
 
70
 
71
- # 显示聊天记录
72
  for message in st.session_state.messages:
73
  with st.chat_message(message["role"]):
74
  st.write(message["content"])
75
 
76
- # 清空聊天记录按钮
 
 
77
  st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
78
 
79
- # 用户输入处理
80
- if prompt := st.chat_input("请输入您的问题:"):
 
 
 
 
81
  st.session_state.messages.append({"role": "user", "content": prompt})
82
  with st.chat_message("user"):
83
  st.write(prompt)
84
 
85
- # Assistant 响应
 
86
  with st.chat_message("assistant"):
87
- with st.spinner("思考中..."):
88
- response = greet2(prompt) # 调用查询函数
89
- if response:
90
- st.write(response)
91
- st.session_state.messages.append({"role": "assistant", "content": response})
92
- else:
93
- st.error("未能生成响应,请检查模型状态。")
 
1
  import streamlit as st
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
  from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
  from llama_index.legacy.callbacks import CallbackManager
5
  from llama_index.llms.openai_like import OpenAILike
6
 
7
+ import os
8
+
9
+
10
+ # 下载模型
11
+ os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
12
+ # Create an instance of CallbackManager
13
  callback_manager = CallbackManager()
14
 
15
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
 
16
  model = "internlm2.5-latest"
17
+ api_key = "eyJ0eXBlIjoiSldUIiwiYWxnIjoiSFM1MTIifQ.eyJqdGkiOiI4MDAwNzM0OCIsInJvbCI6IlJPTEVfUkVHSVNURVIiLCJpc3MiOiJPcGVuWExhYiIsImlhdCI6MTczNzczMjUwMCwiY2xpZW50SWQiOiJlYm1ydm9kNnlvMG5semFlazF5cCIsInBob25lIjoiMTk4MjEyMTUyNzEiLCJ1dWlkIjoiZjc2MDM3NTctMTU2Yy00MTM3LWE1YmEtNTk3MDljODRiNDRkIiwiZW1haWwiOiIiLCJleHAiOjE3NTMyODQ1MDB9.4zD9ixAv1JdP_AJLQhNW3tCgzCGquW6eFcbV0XNqmqCZ0pL5A4hIPVA0zeFleg-n04O1IsyIZZ0rmkATZ1V6_A"
18
+
19
+ # api_base_url = "https://api.siliconflow.cn/v1"
20
+ # model = "internlm/internlm2_5-7b-chat"
21
+ # api_key = "请填写 API Key"
22
 
23
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
 
 
 
 
 
 
 
24
 
25
+
26
+
27
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
28
+ st.title("llama_index_demo")
29
 
30
  # 初始化模型
31
  @st.cache_resource
32
  def init_models():
33
+ embed_model = HuggingFaceEmbedding(
34
+ model_name="/root/model/sentence-transformer"
35
+ )
36
+ Settings.embed_model = embed_model
37
 
38
+ #用初始化llm
39
+ Settings.llm = llm
40
 
41
+ documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
42
+ index = VectorStoreIndex.from_documents(documents)
43
+ query_engine = index.as_query_engine()
44
 
45
+ return query_engine
 
 
 
 
 
46
 
47
  # 检查是否需要初始化模型
48
  if 'query_engine' not in st.session_state:
49
  st.session_state['query_engine'] = init_models()
50
 
 
51
  def greet2(question):
52
+ response = st.session_state['query_engine'].query(question)
53
+ return response
 
 
 
 
 
 
 
 
54
 
55
+
56
+ # Store LLM generated responses
57
+ if "messages" not in st.session_state.keys():
58
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
59
 
60
+ # Display or clear chat messages
61
  for message in st.session_state.messages:
62
  with st.chat_message(message["role"]):
63
  st.write(message["content"])
64
 
65
+ def clear_chat_history():
66
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
67
+
68
  st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
69
 
70
+ # Function for generating LLaMA2 response
71
+ def generate_llama_index_response(prompt_input):
72
+ return greet2(prompt_input)
73
+
74
+ # User-provided prompt
75
+ if prompt := st.chat_input():
76
  st.session_state.messages.append({"role": "user", "content": prompt})
77
  with st.chat_message("user"):
78
  st.write(prompt)
79
 
80
+ # Gegenerate_llama_index_response last message is not from assistant
81
+ if st.session_state.messages[-1]["role"] != "assistant":
82
  with st.chat_message("assistant"):
83
+ with st.spinner("Thinking..."):
84
+ response = generate_llama_index_response(prompt)
85
+ placeholder = st.empty()
86
+ placeholder.markdown(response)
87
+ message = {"role": "assistant", "content": response}
88
+ st.session_state.messages.append(message)