Spaces:
Runtime error
Runtime error
Commit
·
e94e369
1
Parent(s):
1bcf2a0
Update
Browse files- stream.py +181 -0
- utils/frame_rate.py +5 -3
stream.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from streamlit_webrtc import webrtc_streamer
|
| 2 |
+
import numpy as np
|
| 3 |
+
import streamlit as st
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import av
|
| 7 |
+
import threading
|
| 8 |
+
|
| 9 |
+
import multiprocessing
|
| 10 |
+
from typing import List, Optional, Tuple
|
| 11 |
+
|
| 12 |
+
from pandas import DataFrame
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import streamlit as st
|
| 17 |
+
import torch
|
| 18 |
+
from torch import Tensor
|
| 19 |
+
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
from utils.frame_rate import FrameRate
|
| 23 |
+
|
| 24 |
+
np.random.seed(0)
|
| 25 |
+
|
| 26 |
+
st.set_page_config(
|
| 27 |
+
page_title="TimeSFormer",
|
| 28 |
+
page_icon="🧊",
|
| 29 |
+
layout="wide",
|
| 30 |
+
initial_sidebar_state="expanded",
|
| 31 |
+
menu_items={
|
| 32 |
+
"Get Help": "https://www.extremelycoolapp.com/help",
|
| 33 |
+
"Report a bug": "https://www.extremelycoolapp.com/bug",
|
| 34 |
+
"About": "# This is a header. This is an *extremely* cool app!",
|
| 35 |
+
},
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@st.cache_resource
|
| 40 |
+
# @st.experimental_singleton
|
| 41 |
+
def load_model(model_name: str):
|
| 42 |
+
if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
|
| 43 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
| 44 |
+
"MCG-NJU/videomae-base-finetuned-kinetics"
|
| 45 |
+
)
|
| 46 |
+
else:
|
| 47 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 48 |
+
model = TimesformerForVideoClassification.from_pretrained(model_name)
|
| 49 |
+
return feature_extractor, model
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
lock = threading.Lock()
|
| 53 |
+
|
| 54 |
+
rtc_configuration = {
|
| 55 |
+
"iceServers": [
|
| 56 |
+
{
|
| 57 |
+
"urls": "turn:relay1.expressturn.com:3478",
|
| 58 |
+
"username": "efBRTY571ATWBRMP36",
|
| 59 |
+
"credential": "pGcX1BPH5fMmZJc5",
|
| 60 |
+
},
|
| 61 |
+
# {
|
| 62 |
+
# "urls": [
|
| 63 |
+
# "stun:stun1.l.google.com:19302",
|
| 64 |
+
# "stun:stun2.l.google.com:19302",
|
| 65 |
+
# "stun:stun3.l.google.com:19302",
|
| 66 |
+
# "stun:stun4.l.google.com:19302",
|
| 67 |
+
# ]
|
| 68 |
+
# },
|
| 69 |
+
],
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def inference():
|
| 74 |
+
if not img_container.ready:
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
inputs = feature_extractor(list(img_container.imgs), return_tensors="pt")
|
| 78 |
+
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
outputs = model(**inputs)
|
| 81 |
+
logits: Tensor = outputs.logits
|
| 82 |
+
|
| 83 |
+
# model predicts one of the 400 Kinetics-400 classes
|
| 84 |
+
max_index = logits.argmax(-1).item()
|
| 85 |
+
predicted_label = model.config.id2label[max_index]
|
| 86 |
+
|
| 87 |
+
img_container.frame_rate.label = f"{predicted_label}_{logits[0][max_index]:.2f}%"
|
| 88 |
+
|
| 89 |
+
TOP_K = 12
|
| 90 |
+
# logits = np.squeeze(logits)
|
| 91 |
+
logits = logits.squeeze().numpy()
|
| 92 |
+
indices = np.argsort(logits)[::-1][:TOP_K]
|
| 93 |
+
values = logits[indices]
|
| 94 |
+
|
| 95 |
+
results: List[Tuple[str, float]] = []
|
| 96 |
+
for index, value in zip(indices, values):
|
| 97 |
+
predicted_label = model.config.id2label[index]
|
| 98 |
+
# print(f"Label: {predicted_label} - {value:.2f}%")
|
| 99 |
+
results.append((predicted_label, value))
|
| 100 |
+
|
| 101 |
+
img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence"))
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class ImgContainer:
|
| 105 |
+
def __init__(self, frames_per_video: int = 8) -> None:
|
| 106 |
+
self.img: Optional[np.ndarray] = None # raw image
|
| 107 |
+
self.frame_rate: FrameRate = FrameRate()
|
| 108 |
+
self.imgs: List[np.ndarray] = []
|
| 109 |
+
self.frame_rate.reset()
|
| 110 |
+
self.frames_per_video = frames_per_video
|
| 111 |
+
self.rs: Optional[DataFrame] = None
|
| 112 |
+
|
| 113 |
+
def add_frame(self, frame: np.ndarray):
|
| 114 |
+
if len(img_container.imgs) >= frames_per_video:
|
| 115 |
+
self.imgs.pop(0)
|
| 116 |
+
self.imgs.append(frame)
|
| 117 |
+
|
| 118 |
+
@property
|
| 119 |
+
def ready(self):
|
| 120 |
+
return len(img_container.imgs) == self.frames_per_video
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def video_frame_callback(frame: av.VideoFrame) -> av.VideoFrame:
|
| 124 |
+
img = frame.to_ndarray(format="bgr24")
|
| 125 |
+
with lock:
|
| 126 |
+
img_container.img = img
|
| 127 |
+
img_container.frame_rate.count()
|
| 128 |
+
img_container.add_frame(img)
|
| 129 |
+
inference()
|
| 130 |
+
img = img_container.frame_rate.show_fps(img)
|
| 131 |
+
|
| 132 |
+
return av.VideoFrame.from_ndarray(img, format="bgr24")
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def get_frames_per_video(model_name: str) -> int:
|
| 136 |
+
if "base-finetuned" in model_name:
|
| 137 |
+
return 8
|
| 138 |
+
elif "hr-finetuned" in model_name:
|
| 139 |
+
return 16
|
| 140 |
+
else:
|
| 141 |
+
return 96
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
st.title("TimeSFormer")
|
| 145 |
+
|
| 146 |
+
with st.expander("INTRODUCTION"):
|
| 147 |
+
st.text(
|
| 148 |
+
f"""Streamlit demo for TimeSFormer.
|
| 149 |
+
Number of CPU(s): {multiprocessing.cpu_count()}
|
| 150 |
+
"""
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
model_name = st.selectbox(
|
| 154 |
+
"model_name",
|
| 155 |
+
(
|
| 156 |
+
"facebook/timesformer-base-finetuned-k400",
|
| 157 |
+
"facebook/timesformer-base-finetuned-k600",
|
| 158 |
+
"facebook/timesformer-base-finetuned-ssv2",
|
| 159 |
+
"facebook/timesformer-hr-finetuned-k600",
|
| 160 |
+
"facebook/timesformer-hr-finetuned-k400",
|
| 161 |
+
"facebook/timesformer-hr-finetuned-ssv2",
|
| 162 |
+
"fcakyon/timesformer-large-finetuned-k400",
|
| 163 |
+
"fcakyon/timesformer-large-finetuned-k600",
|
| 164 |
+
),
|
| 165 |
+
)
|
| 166 |
+
feature_extractor, model = load_model(model_name)
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
frames_per_video = get_frames_per_video(model_name)
|
| 170 |
+
st.info(f"Frames per video: {frames_per_video}")
|
| 171 |
+
|
| 172 |
+
img_container = ImgContainer(frames_per_video)
|
| 173 |
+
|
| 174 |
+
ctx = st.session_state.ctx = webrtc_streamer(
|
| 175 |
+
key="snapshot",
|
| 176 |
+
video_frame_callback=video_frame_callback,
|
| 177 |
+
rtc_configuration=rtc_configuration,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
if img_container.rs is not None:
|
| 181 |
+
st.dataframe(img_container.rs)
|
utils/frame_rate.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import time, cv2
|
| 3 |
|
|
@@ -5,9 +6,10 @@ import time, cv2
|
|
| 5 |
class FrameRate:
|
| 6 |
def __init__(self) -> None:
|
| 7 |
self.c: int = 0
|
| 8 |
-
self.start_time: float = None
|
| 9 |
-
self.NO_FRAMES =
|
| 10 |
self.fps: float = -1
|
|
|
|
| 11 |
|
| 12 |
def reset(self) -> None:
|
| 13 |
self.start_time = time.time()
|
|
@@ -26,7 +28,7 @@ class FrameRate:
|
|
| 26 |
if self.fps != -1:
|
| 27 |
return cv2.putText(
|
| 28 |
image,
|
| 29 |
-
f"FPS {self.fps:.0f}",
|
| 30 |
(50, 50),
|
| 31 |
cv2.FONT_HERSHEY_SIMPLEX,
|
| 32 |
fontScale=1,
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
import numpy as np
|
| 3 |
import time, cv2
|
| 4 |
|
|
|
|
| 6 |
class FrameRate:
|
| 7 |
def __init__(self) -> None:
|
| 8 |
self.c: int = 0
|
| 9 |
+
self.start_time: Optional[float] = None
|
| 10 |
+
self.NO_FRAMES = 10
|
| 11 |
self.fps: float = -1
|
| 12 |
+
self.label: str = ""
|
| 13 |
|
| 14 |
def reset(self) -> None:
|
| 15 |
self.start_time = time.time()
|
|
|
|
| 28 |
if self.fps != -1:
|
| 29 |
return cv2.putText(
|
| 30 |
image,
|
| 31 |
+
f"FPS {self.fps:.0f} _ {self.label}",
|
| 32 |
(50, 50),
|
| 33 |
cv2.FONT_HERSHEY_SIMPLEX,
|
| 34 |
fontScale=1,
|