File size: 3,740 Bytes
1e87f84
 
9e3c23c
 
 
1e87f84
9e3c23c
1e87f84
 
 
9e3c23c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e87f84
9e3c23c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e87f84
9e3c23c
 
 
 
 
 
 
 
 
 
d8653f1
9e3c23c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8653f1
 
 
 
9e3c23c
6b89aad
9e3c23c
6b89aad
 
 
 
 
 
 
 
 
 
 
 
9e3c23c
 
6b89aad
9e3c23c
d8653f1
 
9e3c23c
 
1e87f84
d8653f1
 
6b89aad
 
9e3c23c
 
a8bf6c1
9e3c23c
6b89aad
 
 
9e3c23c
 
 
6b89aad
 
 
9e3c23c
6b89aad
 
9e3c23c
 
6b89aad
 
9e3c23c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from typing import List, Tuple

import cv2
import numpy as np
import pandas as pd
import torch
from torch import Tensor
from transformers import AutoFeatureExtractor, TimesformerForVideoClassification

from utils.img_container import ImgContainer


def load_model(model_name: str):
    if "base-finetuned-k400" in model_name or "base-finetuned-k600" in model_name:
        feature_extractor = AutoFeatureExtractor.from_pretrained(
            "MCG-NJU/videomae-base-finetuned-kinetics"
        )
    else:
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
    model = TimesformerForVideoClassification.from_pretrained(model_name)
    return feature_extractor, model


def inference():
    if not img_container.ready:
        return

    inputs = feature_extractor(list(img_container.imgs), return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits: Tensor = outputs.logits

    # model predicts one of the 400 Kinetics-400 classes
    max_index = logits.argmax(-1).item()
    predicted_label = model.config.id2label[max_index]

    img_container.frame_rate.label = f"{predicted_label}_{logits[0][max_index]:.2f}%"

    TOP_K = 12
    # logits = np.squeeze(logits)
    logits = logits.squeeze().numpy()
    indices = np.argsort(logits)[::-1][:TOP_K]
    values = logits[indices]

    results: List[Tuple[str, float]] = []
    for index, value in zip(indices, values):
        predicted_label = model.config.id2label[index]
        # print(f"Label: {predicted_label} - {value:.2f}%")
        results.append((predicted_label, value))

    img_container.rs = pd.DataFrame(results, columns=("Label", "Confidence"))


def get_frames_per_video(model_name: str) -> int:
    if "base-finetuned" in model_name:
        return 8
    elif "hr-finetuned" in model_name:
        return 16
    else:
        return 96


model_name = "facebook/timesformer-base-finetuned-k400"
# "facebook/timesformer-base-finetuned-k400"
# "facebook/timesformer-base-finetuned-k600",
# "facebook/timesformer-base-finetuned-ssv2",
# "facebook/timesformer-hr-finetuned-k600",
# "facebook/timesformer-hr-finetuned-k400",
# "facebook/timesformer-hr-finetuned-ssv2",
# "fcakyon/timesformer-large-finetuned-k400",
# "fcakyon/timesformer-large-finetuned-k600",
feature_extractor, model = load_model(model_name)


frames_per_video = get_frames_per_video(model_name)
print(f"Frames per video: {frames_per_video}")

img_container = ImgContainer(frames_per_video)

SKIP_FRAMES = 4

num_skips = 0

# define a video capture object
camera = cv2.VideoCapture(0)

frame_width = int(camera.get(3))
frame_height = int(camera.get(4))
size = (frame_width, frame_height)

video_output = cv2.VideoWriter(
    "activities.mp4", cv2.VideoWriter_fourcc(*"MJPG"), 10, size
)

if camera.isOpened() == False:
    print("Error reading video file")

while camera.isOpened():
    # Capture the video frame
    # by frame
    ret, frame = camera.read()

    num_skips = (num_skips + 1) % SKIP_FRAMES

    img_container.img = frame
    img_container.frame_rate.count()

    if num_skips == 0:
        img_container.add_frame(frame)
        # inference()
    rs = img_container.frame_rate.show_fps(frame, img_container.is_recording)

    # Display the resulting frame
    cv2.imshow("ActivityTracking", rs)

    if img_container.is_recording:
        video_output.write(rs)

    # the 'q' button is set as the
    # quitting button you may use any
    # desired button of your choice
    k = cv2.waitKey(1)

    if k == ord("q"):
        break
    elif k == ord("r"):
        img_container.toggle_recording()

# After the loop release the cap object
camera.release()
video_output.release()
# Destroy all the windows
cv2.destroyAllWindows()