Hidayatmahar commited on
Commit
4e8cbc3
Β·
verified Β·
1 Parent(s): c6b82b8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -7
app.py CHANGED
@@ -3,6 +3,7 @@ import faiss
3
  import numpy as np
4
  from sentence_transformers import SentenceTransformer
5
  import openai
 
6
 
7
  # Load FAISS index
8
  index = faiss.read_index("faiss_index.bin")
@@ -10,28 +11,29 @@ index = faiss.read_index("faiss_index.bin")
10
  # Load embedding model
11
  model = SentenceTransformer("all-MiniLM-L6-v2")
12
 
 
 
 
 
13
  # OpenAI API Key (store it as a secret in Hugging Face)
14
  openai.api_key = st.secrets["GROQ_API_KEY"]
15
 
16
- # Load the preprocessed Pile Law dataset (replace with your dataset path)
17
- law_data = ["Sample Legal Document 1...", "Sample Legal Document 2..."] # Replace with actual data loading
18
-
19
  # Function to search relevant legal documents
20
  def search_legal_docs(query, top_k=5):
21
  query_embedding = model.encode([query])
22
  _, idxs = index.search(query_embedding, top_k)
23
- return [law_data[i] for i in idxs[0]]
24
 
25
  # Streamlit UI
26
- st.title("πŸ” Legal AI Assistant (Pile Law)")
27
 
28
  query = st.text_input("πŸ“Œ Enter your legal query:")
29
 
30
  if query:
31
  results = search_legal_docs(query)
32
  st.write("### πŸ“„ Relevant Legal Documents:")
33
- for res in results:
34
- st.write(f"- {res}")
35
 
36
  # Generate AI-based legal response
37
  response = openai.ChatCompletion.create(
 
3
  import numpy as np
4
  from sentence_transformers import SentenceTransformer
5
  import openai
6
+ from datasets import load_dataset
7
 
8
  # Load FAISS index
9
  index = faiss.read_index("faiss_index.bin")
 
11
  # Load embedding model
12
  model = SentenceTransformer("all-MiniLM-L6-v2")
13
 
14
+ # Load dataset (only titles for reference)
15
+ dataset = load_dataset("macadeliccc/US-LegalKit", split="train")
16
+ law_texts = [item['text'] for item in dataset if 'text' in item]
17
+
18
  # OpenAI API Key (store it as a secret in Hugging Face)
19
  openai.api_key = st.secrets["GROQ_API_KEY"]
20
 
 
 
 
21
  # Function to search relevant legal documents
22
  def search_legal_docs(query, top_k=5):
23
  query_embedding = model.encode([query])
24
  _, idxs = index.search(query_embedding, top_k)
25
+ return [law_texts[i] for i in idxs[0]] # Return matching legal documents
26
 
27
  # Streamlit UI
28
+ st.title("πŸ” Legal AI Assistant (US-LegalKit)")
29
 
30
  query = st.text_input("πŸ“Œ Enter your legal query:")
31
 
32
  if query:
33
  results = search_legal_docs(query)
34
  st.write("### πŸ“„ Relevant Legal Documents:")
35
+ for i, doc in enumerate(results, 1):
36
+ st.write(f"**{i}.** {doc[:500]}...") # Show preview of the document
37
 
38
  # Generate AI-based legal response
39
  response = openai.ChatCompletion.create(