Valeriy Sinyukov
commited on
Commit
·
d8f96d2
1
Parent(s):
a1ad5de
Factor-out pipeline
Browse files
category_classification/models/HibiscusMaximus__scibert_paper_classification/model.py
CHANGED
@@ -1,55 +1,7 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from transformers import pipeline, Pipeline, AutoModelForSequenceClassification
|
5 |
-
from transformers.pipelines import PIPELINE_REGISTRY
|
6 |
|
7 |
name = "HibiscusMaximus/scibert_paper_classification"
|
8 |
|
9 |
-
|
10 |
-
class SciBertPaperClassifierPipeline(Pipeline):
|
11 |
-
def _sanitize_parameters(self, **kwargs):
|
12 |
-
return {}, {}, {}
|
13 |
-
|
14 |
-
def preprocess(self, inputs):
|
15 |
-
if not isinstance(inputs, tp.Iterable):
|
16 |
-
inputs = [inputs]
|
17 |
-
texts = [
|
18 |
-
f"AUTHORS: {' '.join(paper.authors) if isinstance(paper.authors, list) else paper.authors} "
|
19 |
-
f"TITLE: {paper.title} ABSTRACT: {paper.abstract}"
|
20 |
-
for paper in inputs
|
21 |
-
]
|
22 |
-
inputs = self.tokenizer(
|
23 |
-
texts, truncation=True, padding=True, max_length=256, return_tensors="pt"
|
24 |
-
).to(self.device)
|
25 |
-
return inputs
|
26 |
-
|
27 |
-
def _forward(self, model_inputs):
|
28 |
-
with torch.no_grad():
|
29 |
-
outputs = self.model(**model_inputs)
|
30 |
-
return outputs
|
31 |
-
|
32 |
-
def postprocess(self, model_outputs):
|
33 |
-
probs = torch.nn.functional.softmax(model_outputs.logits, dim=-1)
|
34 |
-
results = []
|
35 |
-
for prob in probs:
|
36 |
-
result = [
|
37 |
-
{"label": self.model.config.id2label[label_idx], "score": score.item()}
|
38 |
-
for label_idx, score in enumerate(prob)
|
39 |
-
]
|
40 |
-
results.append(result)
|
41 |
-
if 1 == len(results):
|
42 |
-
return results[0]
|
43 |
-
return results
|
44 |
-
|
45 |
-
|
46 |
-
PIPELINE_REGISTRY.register_pipeline(
|
47 |
-
"paper-classification",
|
48 |
-
pipeline_class=SciBertPaperClassifierPipeline,
|
49 |
-
pt_model=AutoModelForSequenceClassification,
|
50 |
-
)
|
51 |
-
|
52 |
-
|
53 |
class SciBertPaperClassifier:
|
54 |
def __init__(self):
|
55 |
self.pipeline = pipeline("paper-classification", model=name)
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
2 |
|
3 |
name = "HibiscusMaximus/scibert_paper_classification"
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
class SciBertPaperClassifier:
|
6 |
def __init__(self):
|
7 |
self.pipeline = pipeline("paper-classification", model=name)
|
category_classification/models/models.py
CHANGED
@@ -5,6 +5,7 @@ import typing as tp
|
|
5 |
import warnings
|
6 |
from pathlib import Path
|
7 |
|
|
|
8 |
|
9 |
def import_model_module(file_path: os.PathLike):
|
10 |
module_name = str(Path(file_path).relative_to(os.getcwd())).replace(
|
|
|
5 |
import warnings
|
6 |
from pathlib import Path
|
7 |
|
8 |
+
from . import pipeline
|
9 |
|
10 |
def import_model_module(file_path: os.PathLike):
|
11 |
module_name = str(Path(file_path).relative_to(os.getcwd())).replace(
|
category_classification/models/pipeline.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing as tp
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from transformers import Pipeline, AutoModelForSequenceClassification
|
6 |
+
from transformers.pipelines import PIPELINE_REGISTRY
|
7 |
+
|
8 |
+
class PapersClassificationPipeline(Pipeline):
|
9 |
+
def _sanitize_parameters(self, **kwargs):
|
10 |
+
return {}, {}, {}
|
11 |
+
|
12 |
+
def preprocess(self, inputs):
|
13 |
+
if not isinstance(inputs, tp.Iterable):
|
14 |
+
inputs = [inputs]
|
15 |
+
texts = [
|
16 |
+
f"AUTHORS: {' '.join(paper.authors) if isinstance(paper.authors, list) else paper.authors} "
|
17 |
+
f"TITLE: {paper.title} ABSTRACT: {paper.abstract}"
|
18 |
+
for paper in inputs
|
19 |
+
]
|
20 |
+
inputs = self.tokenizer(
|
21 |
+
texts, truncation=True, padding=True, max_length=256, return_tensors="pt"
|
22 |
+
).to(self.device)
|
23 |
+
return inputs
|
24 |
+
|
25 |
+
def _forward(self, model_inputs):
|
26 |
+
with torch.no_grad():
|
27 |
+
outputs = self.model(**model_inputs)
|
28 |
+
return outputs
|
29 |
+
|
30 |
+
def postprocess(self, model_outputs):
|
31 |
+
probs = torch.nn.functional.softmax(model_outputs.logits, dim=-1)
|
32 |
+
results = []
|
33 |
+
for prob in probs:
|
34 |
+
result = [
|
35 |
+
{"label": self.model.config.id2label[label_idx], "score": score.item()}
|
36 |
+
for label_idx, score in enumerate(prob)
|
37 |
+
]
|
38 |
+
results.append(result)
|
39 |
+
if 1 == len(results):
|
40 |
+
return results[0]
|
41 |
+
return results
|
42 |
+
|
43 |
+
|
44 |
+
PIPELINE_REGISTRY.register_pipeline(
|
45 |
+
"paper-classification",
|
46 |
+
pipeline_class=PapersClassificationPipeline,
|
47 |
+
pt_model=AutoModelForSequenceClassification,
|
48 |
+
)
|