Valeriy Sinyukov commited on
Commit
4b079b8
·
1 Parent(s): 283e838

Add scibert model

Browse files
category_classification/models/HibiscusMaximus__scibert_paper_classification/model.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import typing as tp
2
+
3
+ import torch
4
+ from transformers import pipeline, Pipeline, AutoModelForSequenceClassification
5
+ from transformers.pipelines import PIPELINE_REGISTRY
6
+
7
+ name = "HibiscusMaximus/scibert_paper_classification"
8
+
9
+
10
+ class SciBertPaperClassifierPipeline(Pipeline):
11
+ def _sanitize_parameters(self, **kwargs):
12
+ return {}, {}, {}
13
+
14
+ def preprocess(self, inputs):
15
+ if not isinstance(inputs, tp.Iterable):
16
+ inputs = [inputs]
17
+ texts = [
18
+ f"AUTHORS: {' '.join(paper.authors) if isinstance(paper.authors, list) else paper.authors} "
19
+ f"TITLE: {paper.title} ABSTRACT: {paper.abstract}"
20
+ for paper in inputs
21
+ ]
22
+ inputs = self.tokenizer(
23
+ texts, truncation=True, padding=True, max_length=256, return_tensors="pt"
24
+ ).to(self.device)
25
+ return inputs
26
+
27
+ def _forward(self, model_inputs):
28
+ with torch.no_grad():
29
+ outputs = self.model(**model_inputs)
30
+ return outputs
31
+
32
+ def postprocess(self, model_outputs):
33
+ probs = torch.nn.functional.softmax(model_outputs.logits, dim=-1)
34
+ results = []
35
+ for prob in probs:
36
+ result = [
37
+ {"label": self.model.config.id2label[label_idx], "score": score.item()}
38
+ for label_idx, score in enumerate(prob)
39
+ ]
40
+ results.append(result)
41
+ if 1 == len(results):
42
+ return results[0]
43
+ return results
44
+
45
+
46
+ PIPELINE_REGISTRY.register_pipeline(
47
+ "paper-classification",
48
+ pipeline_class=SciBertPaperClassifierPipeline,
49
+ pt_model=AutoModelForSequenceClassification,
50
+ )
51
+
52
+
53
+ class SciBertPaperClassifier:
54
+ def __init__(self):
55
+ self.pipeline = pipeline("paper-classification", model=name)
56
+
57
+ def __call__(self, input):
58
+ return self.pipeline(input)
59
+
60
+
61
+ def get_model():
62
+ return SciBertPaperClassifier()
63
+
64
+
65
+ supported_langs = ["en"]