Initial commit
Browse files
src/utils/gradio_utils.py
CHANGED
@@ -68,10 +68,10 @@ def launch_optimize(img_in_real, prompt, n_hiper):
|
|
68 |
pretrained_model_name = 'CompVis/stable-diffusion-v1-4'
|
69 |
|
70 |
# Load pretrained models
|
71 |
-
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name, subfolder="tokenizer"
|
72 |
-
CLIP_text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name, subfolder="text_encoder"
|
73 |
-
vae = AutoencoderKL.from_pretrained(pretrained_model_name, subfolder="vae"
|
74 |
-
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name, subfolder="unet"
|
75 |
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
76 |
|
77 |
|
|
|
68 |
pretrained_model_name = 'CompVis/stable-diffusion-v1-4'
|
69 |
|
70 |
# Load pretrained models
|
71 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name, subfolder="tokenizer")#, use_auth_token=True)
|
72 |
+
CLIP_text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name, subfolder="text_encoder")#, use_auth_token=True)
|
73 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name, subfolder="vae")#, use_auth_token=True)
|
74 |
+
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name, subfolder="unet")#, use_auth_token=True)
|
75 |
noise_scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
76 |
|
77 |
|