import gradio as gr from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer import os import os.path import pickle import torch from openai import OpenAI base_model_id = "meta-llama/Llama-3.2-3B-Instruct" model_id = "HiGenius/Headline-Generation-Model" hf_token = os.environ.get('HF_TOKEN') openai_api_key = os.environ.get('OPENAI_API_KEY') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def load_model(): base_model = AutoModelForCausalLM.from_pretrained(base_model_id, use_auth_token=hf_token) model = PeftModel.from_pretrained(base_model, model_id, use_auth_token=hf_token).to(device) tokenizer = AutoTokenizer.from_pretrained(base_model_id, use_auth_token=hf_token) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side='left' tokenizer.truncation_side="left" return tokenizer, model def summarize_content(content): client = OpenAI(api_key=openai_api_key) response = client.chat.completions.create( model="gpt-4o", messages=[ {"role": "system", "content": "Summarize the following article content concisely while preserving key information:"}, {"role": "user", "content": content} ], max_tokens=600, temperature=0.3 ) return response.choices[0].message.content tokenizer, model = load_model() guideline_path = "./guidelines.txt" with open(guideline_path, 'r', encoding='utf-8') as f: guidelines = f.read() def process_prompt(tokenizer, content, video_summary = '', guidelines = None): # Check token lengths content_tokens = len(tokenizer.encode(content)) total_tokens = content_tokens if video_summary: total_tokens += len(tokenizer.encode(video_summary)) if content_tokens > 850 or total_tokens > 900: content = summarize_content(content) if guidelines: system_prompt = "You are a helpful assistant that writes engaging headlines. To maximize engagement, you may follow these proven guidelines:\n" + guidelines else: system_prompt = "You are a helpful assistant that writes engaging headlines." user_prompt = ( f"Below is an article and its accompanying video summary:\n\n" f"Article Content:\n{content}\n\n" f"Video Summary:\n{'None' if video_summary == '' else video_summary}\n\n" f"Write ONLY a single engaging headline that accurately reflects the article. Do not include any additional text, explanations, or options." ) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) return prompt def generate_headlines(content, video_summary): if not content.strip(): return "Please enter valid article content." if not video_summary.strip(): video_summary = '' prompt = process_prompt(tokenizer, content, video_summary, guidelines) inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device) headlines = [] for i in range(5): outputs = model.generate(**inputs, max_new_tokens=60, num_return_sequences=1, do_sample=True, temperature=0.7) response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True) response = response.replace('"', '') headlines.append(f"Headline {i+1}: {response}") return "\n\n".join(headlines) # Create Gradio interface demo = gr.Interface( fn=generate_headlines, inputs=[ gr.Textbox(label="Article Content", placeholder="Type the main content of the article here..."), gr.Textbox(label="Video Summary (Optional)", placeholder="Type the summary of the video related to the article...") ], outputs=gr.Textbox(label="Generated Headlines"), title="Article Headline Writer", description="Write catchy headlines from content and video summary." ) if __name__ == "__main__": demo.launch()