Hugo
guideline added
3094d88
raw
history blame
3.05 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import os.path
import pickle
import torch
model_id = "HiGenius/Headline-Generation-Model"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
@st.cache_resource
def load_model():
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side='left'
return tokenizer, model
tokenizer, model = load_model()
guideline_path = "./guidelines.txt"
with open(guideline_path, 'r', encoding='utf-8') as f:
guidelines = f.read()
def process_prompt(tokenizer, content, video_summary = '', guidelines = None):
if guidelines:
system_prompt = "You are a helpful assistant that writes engaging headlines. To maximize engagement, you may follow these proven guidelines:\n" + guidelines
else:
system_prompt = "You are a helpful assistant that writes engaging headlines."
user_prompt = (
f"Below is an article and its accompanying video summary:\n\n"
f"Article Content:\n{content}\n\n"
f"Video Summary:\n{'None' if video_summary == '' else video_summary}\n\n"
f"Write ONLY a single engaging headline that accurately reflects the article. Do not include any additional text, explanations, or options."
)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return prompt
st.title("Article Headline Writer")
st.write("Write a catchy headline from content and video summary.")
# Inputs for content and video summary
content = st.text_area("Enter the article content:", placeholder="Type the main content of the article here...")
video_summary = st.text_area("Enter the summary of the article's accompanying video (optional):", placeholder="Type the summary of the video related to the article...")
if st.button("Generate Headline"):
if content.strip():
if not video_summary.strip():
video_summary = ''
prompt = process_prompt(tokenizer, content, video_summary, guidelines)
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
st.write("### Generated 5 Potential Headlines:")
for i in range(5):
st.write(f"### Headline {i+1}")
outputs = model.generate(**inputs,
max_new_tokens=60,
num_return_sequences=1,
do_sample=True,
temperature=0.7)
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
response = response.replace('"', '')
st.write(f"{response}")
else:
st.write("Please enter a valid prompt.")