File size: 22,562 Bytes
36e6152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from typing import Any, Dict, Optional, Tuple, List

import torch
import torch.nn as nn
import einops
from einops import repeat

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from ..embeddings import PatchEmbed, PooledEmbed, TimestepEmbed, EmbedND, OutEmbed
from ..attention import HiDreamAttention, FeedForwardSwiGLU
from ..attention_processor import HiDreamAttnProcessor_flashattn
from ..moe import MOEFeedForwardSwiGLU

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

class TextProjection(nn.Module):
    def __init__(self, in_features, hidden_size):
        super().__init__()
        self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)

    def forward(self, caption):
        hidden_states = self.linear(caption)
        return hidden_states
    
class BlockType:
    TransformerBlock = 1
    SingleTransformerBlock = 2

@maybe_allow_in_graph
class HiDreamImageSingleTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        num_routed_experts: int = 4,
        num_activated_experts: int = 2
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(dim, 6 * dim, bias=True)
        )
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

        # 1. Attention
        self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
        self.attn1 = HiDreamAttention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            processor = HiDreamAttnProcessor_flashattn(),
            single = True
        )

        # 3. Feed-forward
        self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
        if num_routed_experts > 0:
            self.ff_i = MOEFeedForwardSwiGLU(
                dim = dim, 
                hidden_dim = 4 * dim,
                num_routed_experts = num_routed_experts,
                num_activated_experts = num_activated_experts,
            )
        else:
            self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
    
    def forward(
        self,
        image_tokens: torch.FloatTensor,
        image_tokens_masks: Optional[torch.FloatTensor] = None,
        text_tokens: Optional[torch.FloatTensor] = None,
        adaln_input: Optional[torch.FloatTensor] = None,
        rope: torch.FloatTensor = None,

    ) -> torch.FloatTensor:
        wtype = image_tokens.dtype
        shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
            self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
        
        # 1. MM-Attention
        norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
        norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
        attn_output_i = self.attn1(
            norm_image_tokens,
            image_tokens_masks,
            rope = rope,
        )
        image_tokens = gate_msa_i * attn_output_i + image_tokens
        
        # 2. Feed-forward
        norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
        norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
        ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
        image_tokens = ff_output_i + image_tokens
        return image_tokens

@maybe_allow_in_graph
class HiDreamImageTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        num_routed_experts: int = 4,
        num_activated_experts: int = 2
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(dim, 12 * dim, bias=True)
        )
        nn.init.zeros_(self.adaLN_modulation[1].weight)
        nn.init.zeros_(self.adaLN_modulation[1].bias)

        # 1. Attention
        self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
        self.norm1_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
        self.attn1 = HiDreamAttention(
            query_dim=dim,
            heads=num_attention_heads,
            dim_head=attention_head_dim,
            processor = HiDreamAttnProcessor_flashattn(),
            single = False
        )

        # 3. Feed-forward
        self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
        if num_routed_experts > 0:
            self.ff_i = MOEFeedForwardSwiGLU(
                dim = dim, 
                hidden_dim = 4 * dim,
                num_routed_experts = num_routed_experts,
                num_activated_experts = num_activated_experts,
            )
        else:
            self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
        self.norm3_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
        self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
    
    def forward(
        self,
        image_tokens: torch.FloatTensor,
        image_tokens_masks: Optional[torch.FloatTensor] = None,
        text_tokens: Optional[torch.FloatTensor] = None,
        adaln_input: Optional[torch.FloatTensor] = None,
        rope: torch.FloatTensor = None,
    ) -> torch.FloatTensor:
        wtype = image_tokens.dtype
        shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
        shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
            self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
        
        # 1. MM-Attention
        norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
        norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
        norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
        norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t

        attn_output_i, attn_output_t = self.attn1(
            norm_image_tokens,
            image_tokens_masks,
            norm_text_tokens,
            rope = rope,
        )

        image_tokens = gate_msa_i * attn_output_i + image_tokens
        text_tokens = gate_msa_t * attn_output_t + text_tokens
        
        # 2. Feed-forward
        norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
        norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
        norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
        norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t

        ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
        ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
        image_tokens = ff_output_i + image_tokens
        text_tokens = ff_output_t + text_tokens
        return image_tokens, text_tokens
    
@maybe_allow_in_graph
class HiDreamImageBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        num_routed_experts: int = 4,
        num_activated_experts: int = 2,
        block_type: BlockType = BlockType.TransformerBlock,
    ):
        super().__init__()
        block_classes = {
            BlockType.TransformerBlock: HiDreamImageTransformerBlock,
            BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
        }
        self.block = block_classes[block_type](
            dim,
            num_attention_heads,
            attention_head_dim,
            num_routed_experts,
            num_activated_experts
        )
    
    def forward(
        self,
        image_tokens: torch.FloatTensor,
        image_tokens_masks: Optional[torch.FloatTensor] = None,
        text_tokens: Optional[torch.FloatTensor] = None,
        adaln_input: torch.FloatTensor = None,
        rope: torch.FloatTensor = None,
    ) -> torch.FloatTensor:
        return self.block(
            image_tokens,
            image_tokens_masks,
            text_tokens,
            adaln_input,
            rope,
        )

class HiDreamImageTransformer2DModel(
    ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
):
    _supports_gradient_checkpointing = True
    _no_split_modules = ["HiDreamImageBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: Optional[int] = None,
        in_channels: int = 64,
        out_channels: Optional[int] = None,
        num_layers: int = 16,
        num_single_layers: int = 32,
        attention_head_dim: int = 128,
        num_attention_heads: int = 20,
        caption_channels: List[int] = None,
        text_emb_dim: int = 2048,
        num_routed_experts: int = 4,
        num_activated_experts: int = 2,
        axes_dims_rope: Tuple[int, int] = (32, 32),
        max_resolution: Tuple[int, int] = (128, 128),
        llama_layers: List[int] = None, 
    ):
        super().__init__()
        self.out_channels = out_channels or in_channels
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
        self.llama_layers = llama_layers

        self.t_embedder = TimestepEmbed(self.inner_dim)
        self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim)
        self.x_embedder = PatchEmbed(
            patch_size = patch_size,
            in_channels = in_channels,
            out_channels = self.inner_dim,
        )
        self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)

        self.double_stream_blocks = nn.ModuleList(
            [
                HiDreamImageBlock(
                    dim = self.inner_dim,
                    num_attention_heads = self.config.num_attention_heads,
                    attention_head_dim = self.config.attention_head_dim,
                    num_routed_experts = num_routed_experts,
                    num_activated_experts = num_activated_experts,
                    block_type = BlockType.TransformerBlock
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_stream_blocks = nn.ModuleList(
            [
                HiDreamImageBlock(
                    dim = self.inner_dim,
                    num_attention_heads = self.config.num_attention_heads,
                    attention_head_dim = self.config.attention_head_dim,
                    num_routed_experts = num_routed_experts,
                    num_activated_experts = num_activated_experts,
                    block_type = BlockType.SingleTransformerBlock
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.final_layer = OutEmbed(self.inner_dim, patch_size, self.out_channels)

        caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
        caption_projection = []
        for caption_channel in caption_channels:
            caption_projection.append(TextProjection(in_features = caption_channel, hidden_size = self.inner_dim))
        self.caption_projection = nn.ModuleList(caption_projection)
        self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def expand_timesteps(self, timesteps, batch_size, device):
        if not torch.is_tensor(timesteps):
            is_mps = device.type == "mps"
            if isinstance(timesteps, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(device)
        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(batch_size)
        return timesteps

    def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:            
        if is_training:
            x = einops.rearrange(x, 'B S (p1 p2 C) -> B C S (p1 p2)', p1=self.config.patch_size, p2=self.config.patch_size)
        else:
            x_arr = []
            for i, img_size in enumerate(img_sizes):
                pH, pW = img_size
                x_arr.append(
                    einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)', 
                        p1=self.config.patch_size, p2=self.config.patch_size)
                )
            x = torch.cat(x_arr, dim=0)
        return x

    def patchify(self, x, max_seq, img_sizes=None):
        pz2 = self.config.patch_size * self.config.patch_size
        if isinstance(x, torch.Tensor):
            B, C = x.shape[0], x.shape[1]
            device = x.device
            dtype = x.dtype
        else:
            B, C = len(x), x[0].shape[0]
            device = x[0].device
            dtype = x[0].dtype
        x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)

        if img_sizes is not None:
            for i, img_size in enumerate(img_sizes):
                x_masks[i, 0:img_size[0] * img_size[1]] = 1
            x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
        elif isinstance(x, torch.Tensor):
            pH, pW = x.shape[-2] // self.config.patch_size, x.shape[-1] // self.config.patch_size
            x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.config.patch_size, p2=self.config.patch_size)
            img_sizes = [[pH, pW]] * B
            x_masks = None
        else:
            raise NotImplementedError
        return x, x_masks, img_sizes

    def forward(
        self,
        hidden_states: torch.Tensor,
        timesteps: torch.LongTensor = None,
        encoder_hidden_states: torch.Tensor = None,
        pooled_embeds: torch.Tensor = None,
        img_sizes: Optional[List[Tuple[int, int]]] = None,
        img_ids: Optional[torch.Tensor] = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ):
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )

        # spatial forward
        batch_size = hidden_states.shape[0]
        hidden_states_type = hidden_states.dtype

        # 0. time
        timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
        timesteps = self.t_embedder(timesteps, hidden_states_type)
        p_embedder = self.p_embedder(pooled_embeds)
        adaln_input = timesteps + p_embedder

        hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
        if image_tokens_masks is None:
            pH, pW = img_sizes[0]
            img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
            img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
            img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
            img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
        hidden_states = self.x_embedder(hidden_states)

        T5_encoder_hidden_states = encoder_hidden_states[0]
        encoder_hidden_states = encoder_hidden_states[-1]
        encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]

        if self.caption_projection is not None:
            new_encoder_hidden_states = []
            for i, enc_hidden_state in enumerate(encoder_hidden_states):
                enc_hidden_state = self.caption_projection[i](enc_hidden_state)
                enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
                new_encoder_hidden_states.append(enc_hidden_state)
            encoder_hidden_states = new_encoder_hidden_states
            T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
            T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
            encoder_hidden_states.append(T5_encoder_hidden_states)

        txt_ids = torch.zeros(
            batch_size, 
            encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1], 
            3, 
            device=img_ids.device, dtype=img_ids.dtype
        )
        ids = torch.cat((img_ids, txt_ids), dim=1)
        rope = self.pe_embedder(ids)

        # 2. Blocks
        block_id = 0
        initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
        initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
        for bid, block in enumerate(self.double_stream_blocks):
            cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
            cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
            if self.training and self.gradient_checkpointing:
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
                    return custom_forward
                
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, initial_encoder_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    image_tokens_masks,
                    cur_encoder_hidden_states,
                    adaln_input,
                    rope,
                    **ckpt_kwargs,
                )
            else:
                hidden_states, initial_encoder_hidden_states = block(
                    image_tokens = hidden_states,
                    image_tokens_masks = image_tokens_masks,
                    text_tokens = cur_encoder_hidden_states,
                    adaln_input = adaln_input,
                    rope = rope,
                )
            initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
            block_id += 1

        image_tokens_seq_len = hidden_states.shape[1]
        hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
        hidden_states_seq_len = hidden_states.shape[1]
        if image_tokens_masks is not None:
            encoder_attention_mask_ones = torch.ones(
                (batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
                device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
            )
            image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)

        for bid, block in enumerate(self.single_stream_blocks):
            cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
            hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
            if self.training and self.gradient_checkpointing:
                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
                    return custom_forward
                
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    image_tokens_masks,
                    None,
                    adaln_input,
                    rope,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = block(
                    image_tokens = hidden_states,
                    image_tokens_masks = image_tokens_masks,
                    text_tokens = None,
                    adaln_input = adaln_input,
                    rope = rope,
                )
            hidden_states = hidden_states[:, :hidden_states_seq_len]
            block_id += 1
        
        hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
        output = self.final_layer(hidden_states, adaln_input)
        output = self.unpatchify(output, img_sizes, self.training)
        if image_tokens_masks is not None:
            image_tokens_masks = image_tokens_masks[:, :image_tokens_seq_len]

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output, image_tokens_masks)
        return Transformer2DModelOutput(sample=output, mask=image_tokens_masks)