import gradio as gr from gradio_client import Client import re import json from datetime import datetime # 初始化任务生成客户端(腾讯混元 Space) taskgen_client = Client("tencent/Hunyuan-Large") # 构建 Gradio UI def build_ui(): with gr.Blocks() as demo: gr.Markdown("## 📝 JD 任务解析与解法选择 Demo") jd_text = gr.Textbox(label="职位描述 (JD)", placeholder="请输入职位描述文本,如‘负责销售数据分析与报告撰写’") task = gr.Textbox(label="提取的任务", interactive=False) solution_options = gr.CheckboxGroup(label="任务解法选项", choices=["选项1", "选项2", "选项3"], type="index") final_solution = gr.Textbox(label="您的最终解法", lines=3, placeholder="请提供您的解法") comment = gr.Textbox(label="📝 选择理由", lines=3, placeholder="为什么选择这个解法") generate_task = gr.Button("🔍 解析 JD 提取任务") submit = gr.Button("✅ 提交选择与解法(保存为RLHF数据)") feedback = gr.Textbox(label="系统反馈", interactive=False) jd_state = gr.State("") task_state = gr.State("") solution_state = gr.State([]) def handle_jd_submit(jd_text): # 从 JD 中提取任务描述 message = f"""你是一个任务解析助手,请根据以下 JD 提取出相关的任务: JD: {jd_text} 请提取一个任务描述并用简洁明了的语言表达。 """ response = taskgen_client.predict(message=message, api_name="/chat") task_match = re.search(r"任务[::](.*)", response) task = task_match.group(1).strip() if task_match else "任务解析失败" # 生成解法选项 solution_options = [ f"解法1:基于数据分析工具,生成详细报告", f"解法2:通过市场调研,提出优化建议", f"解法3:结合用户需求,制定定制化销售策略" ] return task, solution_options, jd_text, task, solution_options def handle_submit(selected_option, comment_text, final_solution_text): record = { "task": task_state, "solution_options": solution_state, "selected_option": selected_option, "comment": comment_text, "final_solution": final_solution_text, "timestamp": datetime.now().isoformat() } try: with open("rlhf_data.jsonl", "a", encoding="utf-8") as f: json.dump(record, f, ensure_ascii=False) f.write("\n") feedback_text = f"✅ RLHF 数据已保存,选择了解法 {selected_option}" except Exception as e: feedback_text = f"❌ 保存失败:{str(e)}" return feedback_text generate_task.click(fn=handle_jd_submit, inputs=[jd_text], outputs=[task, solution_options, jd_state, task_state, solution_state]) submit.click(fn=handle_submit, inputs=[solution_options, comment, final_solution], outputs=[feedback]) return demo if __name__ == "__main__": demo = build_ui() demo.launch()