import gradio as gr from gradio_client import Client import re from datetime import datetime import json # 初始化任务生成客户端(腾讯混元 Space) taskgen_client = Client("tencent/Hunyuan-Large") # 构建 Gradio UI def build_ui(): with gr.Blocks() as demo: gr.Markdown("## 📝 JD 任务解析与解法选择 Demo") jd_text = gr.Textbox(label="职位描述 (JD)", placeholder="请输入职位描述文本,如‘负责销售数据分析与报告撰写’") task = gr.Textbox(label="提取的可测试任务", interactive=False) testable_skills = gr.Textbox(label="可测试的硬技能", interactive=False) solution_options = gr.CheckboxGroup(label="任务解法选项", choices=["选项1", "选项2", "选项3"], type="index") final_solution = gr.Textbox(label="您的最终解法", lines=3, placeholder="请提供您的解法") comment = gr.Textbox(label="📝 选择理由", lines=3, placeholder="为什么选择这个解法") generate_task = gr.Button("🔍 解析 JD 提取任务") generate_solution = gr.Button("🎨 生成解法选项") submit = gr.Button("✅ 提交选择与解法(保存为RLHF数据)") feedback = gr.Textbox(label="系统反馈", interactive=False) jd_state = gr.State("") task_state = gr.State("") solution_state = gr.State([]) def handle_jd_submit(jd_text): # 步骤 1:解析任务,并生成具体的可测试任务 message = f"""你是一个任务解析助手,请根据以下 JD 提取出一个可以测试硬技能的任务,并具体列出需要的硬技能: JD: {jd_text} 请提取出以下内容: 1. 任务描述:可以通过具体操作测试的任务 2. 硬技能:为测试该任务所需的硬技能(例如编程语言、工具、技术等)""" response = taskgen_client.predict(message=message, api_name="/chat") # 任务描述和可测试硬技能的提取 task_match = re.search(r"任务描述[::](.*?)(、|。)", response) skills_match = re.search(r"硬技能[::](.*?)(、|。)", response) task = task_match.group(1).strip() if task_match else "任务解析失败" testable_skills = skills_match.group(1).strip() if skills_match else "无硬技能信息" return task, testable_skills, jd_text, task, testable_skills def handle_generate_solution(task): # 步骤 2:生成解法选项 solution_message = f"""根据以下任务描述,生成三个解决方案选项: 任务描述:{task} 请为该任务生成三个具体的解决方案,并列出其优缺点。""" solution_response = taskgen_client.predict(message=solution_message, api_name="/chat") # 解析解法选项(假设模型返回每个选项单独一行) solution_options = solution_response.split("\n") # 假设解法选项按行分开 return solution_options def handle_submit(selected_option, comment_text, final_solution_text): record = { "task": task_state, "solution_options": solution_state, "selected_option": selected_option, "comment": comment_text, "final_solution": final_solution_text, "timestamp": datetime.now().isoformat() } try: with open("rlhf_data.jsonl", "a", encoding="utf-8") as f: json.dump(record, f, ensure_ascii=False) f.write("\n") feedback_text = f"✅ RLHF 数据已保存,选择了解法 {selected_option}" except Exception as e: feedback_text = f"❌ 保存失败:{str(e)}" return feedback_text generate_task.click(fn=handle_jd_submit, inputs=[jd_text], outputs=[task, testable_skills, jd_state, task_state]) generate_solution.click(fn=handle_generate_solution, inputs=[task], outputs=[solution_options]) submit.click(fn=handle_submit, inputs=[solution_options, comment, final_solution], outputs=[feedback]) return demo if __name__ == "__main__": demo = build_ui() demo.launch()