Heyyaha commited on
Commit
ce442ec
·
verified ·
1 Parent(s): 3e2443e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -61
app.py CHANGED
@@ -1,88 +1,89 @@
1
  import gradio as gr
 
 
2
  from gradio_client import Client
3
  import re
4
- from datetime import datetime
5
  import json
6
 
7
  # 初始化任务生成客户端(腾讯混元 Space)
8
  taskgen_client = Client("tencent/Hunyuan-Large")
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  # 构建 Gradio UI
11
  def build_ui():
12
  with gr.Blocks() as demo:
13
- gr.Markdown("## 📝 JD 任务解析与解法选择 Demo")
14
-
15
- jd_text = gr.Textbox(label="职位描述 (JD)", placeholder="请输入职位描述文本,如‘负责销售数据分析与报告撰写’")
16
- task = gr.Textbox(label="提取的可测试任务", interactive=False)
17
- testable_skills = gr.Textbox(label="可测试的硬技能", interactive=False)
18
- solution_options = gr.CheckboxGroup(label="任务解法选项", choices=["选项1", "选项2", "选项3"], type="index")
19
- final_solution = gr.Textbox(label="您的最终解法", lines=3, placeholder="请提供您的解法")
20
- comment = gr.Textbox(label="📝 选择理由", lines=3, placeholder="为什么选择这个解法")
21
-
22
- generate_task = gr.Button("🔍 解析 JD 提取任务")
23
- generate_solution = gr.Button("🎨 生成解法选项")
24
- submit = gr.Button(" 提交选择与解法(保存为RLHF数据)")
 
 
 
 
25
  feedback = gr.Textbox(label="系统反馈", interactive=False)
26
 
27
- jd_state = gr.State("")
28
- task_state = gr.State("")
29
- solution_state = gr.State([])
30
-
31
- def handle_jd_submit(jd_text):
32
- # 步骤 1:解析任务,并生成具体的可测试任务
33
- message = f"""你是一个任务解析助手,请根据以下 JD 提取出一个可以测试硬技能的任务,并具体列出需要的硬技能:
34
- JD: {jd_text}
35
- 请提取出以下内容:
36
- 1. 任务描述:可以通过具体操作测试的任务
37
- 2. 硬技能:为测试该任务所需的硬技能(例如编程语言、工具、技术等)"""
38
-
39
- response = taskgen_client.predict(message=message, api_name="/chat")
40
-
41
- # 任务描述和可测试硬技能的提取
42
- task_match = re.search(r"任务描述[::](.*?)(、|。)", response)
43
- skills_match = re.search(r"硬技能[::](.*?)(、|。)", response)
44
-
45
- task = task_match.group(1).strip() if task_match else "任务解析失败"
46
- testable_skills = skills_match.group(1).strip() if skills_match else "无硬技能信息"
47
-
48
- return task, testable_skills, jd_text, task, testable_skills
49
-
50
- def handle_generate_solution(task):
51
- # 步骤 2:生成解法选项
52
- solution_message = f"""根据以下任务描述,生成三个解决方案选项:
53
- 任务描述:{task}
54
- 请为该任务生成三个具体的解决方案,并列出其优缺点。"""
55
-
56
- solution_response = taskgen_client.predict(message=solution_message, api_name="/chat")
57
-
58
- # 解析解法选项(假设模型返回每个选项单独一行)
59
- solution_options = solution_response.split("\n") # 假设解法选项按行分开
60
- return solution_options
61
-
62
- def handle_submit(selected_option, comment_text, final_solution_text):
63
  record = {
64
- "task": task_state,
65
- "solution_options": solution_state,
66
- "selected_option": selected_option,
67
  "comment": comment_text,
68
- "final_solution": final_solution_text,
69
  "timestamp": datetime.now().isoformat()
70
  }
71
  try:
72
- with open("rlhf_data.jsonl", "a", encoding="utf-8") as f:
73
  json.dump(record, f, ensure_ascii=False)
74
  f.write("\n")
75
- feedback_text = f"✅ RLHF 数据已保存,选择了解法 {selected_option}"
76
  except Exception as e:
77
- feedback_text = f"❌ 保存失败:{str(e)}"
78
- return feedback_text
79
 
80
- generate_task.click(fn=handle_jd_submit, inputs=[jd_text], outputs=[task, testable_skills, jd_state, task_state])
81
- generate_solution.click(fn=handle_generate_solution, inputs=[task], outputs=[solution_options])
82
- submit.click(fn=handle_submit, inputs=[solution_options, comment, final_solution], outputs=[feedback])
83
 
84
  return demo
85
 
86
  if __name__ == "__main__":
87
  demo = build_ui()
88
- demo.launch()
 
1
  import gradio as gr
2
+ import os
3
+ from datetime import datetime
4
  from gradio_client import Client
5
  import re
6
+ import uuid
7
  import json
8
 
9
  # 初始化任务生成客户端(腾讯混元 Space)
10
  taskgen_client = Client("tencent/Hunyuan-Large")
11
 
12
+ OUTPUT_DIR = "outputs"
13
+ os.makedirs(OUTPUT_DIR, exist_ok=True)
14
+
15
+ # 拆解 JD 成任务,并生成三个解决方案
16
+ def generate_solutions_from_jd(jd):
17
+ message = f"""你是一个岗位分析助手,请根据以下JD内容:\n
18
+ 1. 首先识别一个可以用来测试岗位候选人核心能力的具体任务;
19
+ 2. 然后为这个任务生成三个不同的解决方案建议。
20
+
21
+ 请严格以如下格式输出:
22
+ 任务:(任务描述)\n方案1:(内容)\n方案2:(内容)\n方案3:(内容)\n
23
+ JD: {jd}
24
+ """
25
+ response = taskgen_client.predict(message=message, api_name="/chat")
26
+
27
+ task_match = re.search(r"任务[::](.*)", response)
28
+ solution1 = re.search(r"方案1[::](.*)", response)
29
+ solution2 = re.search(r"方案2[::](.*)", response)
30
+ solution3 = re.search(r"方案3[::](.*)", response)
31
+
32
+ task = task_match.group(1).strip() if task_match else "任务解析失败"
33
+ s1 = solution1.group(1).strip() if solution1 else "方案1解析失败"
34
+ s2 = solution2.group(1).strip() if solution2 else "方案2解析失败"
35
+ s3 = solution3.group(1).strip() if solution3 else "方案3解析失败"
36
+
37
+ return task, s1, s2, s3
38
+
39
  # 构建 Gradio UI
40
  def build_ui():
41
  with gr.Blocks() as demo:
42
+ gr.Markdown("## 📌 JD 任务拆解 + 解决方案选择 Demo")
43
+
44
+ jd_input = gr.Textbox(label="输入 JD", placeholder="请输入岗位描述 JD")
45
+ task_output = gr.Textbox(label="拆解出的测试任务", interactive=False)
46
+
47
+ generate_button = gr.Button("🚀 拆解任务并生成方案")
48
+
49
+ sol1 = gr.Textbox(label="方案1", interactive=False)
50
+ sol2 = gr.Textbox(label="方案2", interactive=False)
51
+ sol3 = gr.Textbox(label="方案3", interactive=False)
52
+
53
+ select_radio = gr.Radio(choices=["1", "2", "3"], label="请选择你最满意的解决方案编号")
54
+ user_solution = gr.Textbox(lines=4, label="📄 或者填写你自己的解决方案(可选)")
55
+ comment = gr.Textbox(lines=3, label="📝 请选择的理由或批注")
56
+
57
+ submit = gr.Button("✅ 提交 RLHF 数据")
58
  feedback = gr.Textbox(label="系统反馈", interactive=False)
59
 
60
+ task_state = gr.State()
61
+
62
+ def handle_jd_input(jd_text):
63
+ task, s1, s2, s3 = generate_solutions_from_jd(jd_text)
64
+ return task, s1, s2, s3, task
65
+
66
+ def handle_submit(selected_idx, user_input_text, comment_text, task_text):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  record = {
68
+ "task": task_text,
69
+ "selected_index": selected_idx,
70
+ "user_solution": user_input_text,
71
  "comment": comment_text,
 
72
  "timestamp": datetime.now().isoformat()
73
  }
74
  try:
75
+ with open("rlhf_jd_data.jsonl", "a", encoding="utf-8") as f:
76
  json.dump(record, f, ensure_ascii=False)
77
  f.write("\n")
78
+ return f"✅ 数据已保存,选择方案 {selected_idx}"
79
  except Exception as e:
80
+ return f"❌ 保存失败:{str(e)}"
 
81
 
82
+ generate_button.click(fn=handle_jd_input, inputs=[jd_input], outputs=[task_output, sol1, sol2, sol3, task_state])
83
+ submit.click(fn=handle_submit, inputs=[select_radio, user_solution, comment, task_state], outputs=[feedback])
 
84
 
85
  return demo
86
 
87
  if __name__ == "__main__":
88
  demo = build_ui()
89
+ demo.launch()