Spaces:
Running
Running
File size: 4,429 Bytes
6a0ce2e d46930c 6a0ce2e 3e2443e 6a0ce2e 3e2443e 6a0ce2e 3e2443e 6a0ce2e 3e2443e d46930c 6a0ce2e 3e2443e 6a0ce2e 3e2443e d46930c 3e2443e d46930c 3e2443e d46930c 3e2443e d46930c 3e2443e 6a0ce2e 3e2443e 6a0ce2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import gradio as gr
from gradio_client import Client
import re
from datetime import datetime
import json
# 初始化任务生成客户端(腾讯混元 Space)
taskgen_client = Client("tencent/Hunyuan-Large")
# 构建 Gradio UI
def build_ui():
with gr.Blocks() as demo:
gr.Markdown("## 📝 JD 任务解析与解法选择 Demo")
jd_text = gr.Textbox(label="职位描述 (JD)", placeholder="请输入职位描述文本,如‘负责销售数据分析与报告撰写’")
task = gr.Textbox(label="提取的可测试任务", interactive=False)
testable_skills = gr.Textbox(label="可测试的硬技能", interactive=False)
solution_options = gr.CheckboxGroup(label="任务解法选项", choices=["选项1", "选项2", "选项3"], type="index")
final_solution = gr.Textbox(label="您的最终解法", lines=3, placeholder="请提供您的解法")
comment = gr.Textbox(label="📝 选择理由", lines=3, placeholder="为什么选择这个解法")
generate_task = gr.Button("🔍 解析 JD 提取任务")
generate_solution = gr.Button("🎨 生成解法选项")
submit = gr.Button("✅ 提交选择与解法(保存为RLHF数据)")
feedback = gr.Textbox(label="系统反馈", interactive=False)
jd_state = gr.State("")
task_state = gr.State("")
solution_state = gr.State([])
def handle_jd_submit(jd_text):
# 步骤 1:解析任务,并生成具体的可测试任务
message = f"""你是一个任务解析助手,请根据以下 JD 提取出一个可以测试硬技能的任务,并具体列出需要的硬技能:
JD: {jd_text}
请提取出以下内容:
1. 任务描述:可以通过具体操作测试的任务
2. 硬技能:为测试该任务所需的硬技能(例如编程语言、工具、技术等)"""
response = taskgen_client.predict(message=message, api_name="/chat")
# 任务描述和可测试硬技能的提取
task_match = re.search(r"任务描述[::](.*?)(、|。)", response)
skills_match = re.search(r"硬技能[::](.*?)(、|。)", response)
task = task_match.group(1).strip() if task_match else "任务解析失败"
testable_skills = skills_match.group(1).strip() if skills_match else "无硬技能信息"
return task, testable_skills, jd_text, task, testable_skills
def handle_generate_solution(task):
# 步骤 2:生成解法选项
solution_message = f"""根据以下任务描述,生成三个解决方案选项:
任务描述:{task}
请为该任务生成三个具体的解决方案,并列出其优缺点。"""
solution_response = taskgen_client.predict(message=solution_message, api_name="/chat")
# 解析解法选项(假设模型返回每个选项单独一行)
solution_options = solution_response.split("\n") # 假设解法选项按行分开
return solution_options
def handle_submit(selected_option, comment_text, final_solution_text):
record = {
"task": task_state,
"solution_options": solution_state,
"selected_option": selected_option,
"comment": comment_text,
"final_solution": final_solution_text,
"timestamp": datetime.now().isoformat()
}
try:
with open("rlhf_data.jsonl", "a", encoding="utf-8") as f:
json.dump(record, f, ensure_ascii=False)
f.write("\n")
feedback_text = f"✅ RLHF 数据已保存,选择了解法 {selected_option}"
except Exception as e:
feedback_text = f"❌ 保存失败:{str(e)}"
return feedback_text
generate_task.click(fn=handle_jd_submit, inputs=[jd_text], outputs=[task, testable_skills, jd_state, task_state])
generate_solution.click(fn=handle_generate_solution, inputs=[task], outputs=[solution_options])
submit.click(fn=handle_submit, inputs=[solution_options, comment, final_solution], outputs=[feedback])
return demo
if __name__ == "__main__":
demo = build_ui()
demo.launch()
|