Spaces:
Build error
Build error
import streamlit as st | |
import pandas as pd | |
import random | |
from datetime import datetime, timedelta | |
# Helper function to generate a random date within the last year | |
def random_date(): | |
start_date = datetime.now() - timedelta(days=365) | |
random_days = random.randint(0, 365) | |
return (start_date + timedelta(days=random_days)).strftime("%Y-%m-%d") | |
# Function to load and cache the product catalog | |
def load_catalog(): | |
products = { | |
"Product Name": [ | |
"Notepad++", "WinRAR", "7-Zip", "CCleaner", "TeamViewer", | |
"FileZilla", "PuTTY", "WinSCP", "Everything", "Greenshot", | |
"Visual Studio Code", "JetBrains IntelliJ IDEA", "Sublime Text", "Atom", "Eclipse", | |
"PyCharm", "NetBeans", "Xcode", "Android Studio", "GitLab", | |
"Norton Antivirus", "McAfee Total Protection", "Kaspersky Internet Security", "Bitdefender Antivirus Plus", "Avast Free Antivirus", | |
"Sophos Home", "Trend Micro Antivirus+", "ESET NOD32 Antivirus", "F-Secure SAFE", "Malwarebytes", | |
"Microsoft Office 365", "Google Workspace", "Slack", "Trello", "Asana", | |
"Zoom", "Evernote", "Notion", "Dropbox", "Adobe Acrobat Reader", | |
"Adobe Photoshop", "Adobe Illustrator", "Adobe Premiere Pro", "Final Cut Pro", "Sketch", | |
"Blender", "Autodesk Maya", "CorelDRAW", "GIMP", "Inkscape" | |
], | |
"Category": [ | |
"Utility Tools", "Utility Tools", "Utility Tools", "Utility Tools", "Utility Tools", | |
"Utility Tools", "Utility Tools", "Utility Tools", "Utility Tools", "Utility Tools", | |
"Development Tools", "Development Tools", "Development Tools", "Development Tools", "Development Tools", | |
"Development Tools", "Development Tools", "Development Tools", "Development Tools", "Development Tools", | |
"Security Software", "Security Software", "Security Software", "Security Software", "Security Software", | |
"Security Software", "Security Software", "Security Software", "Security Software", "Security Software", | |
"Productivity Software", "Productivity Software", "Productivity Software", "Productivity Software", "Productivity Software", | |
"Productivity Software", "Productivity Software", "Productivity Software", "Productivity Software", "Productivity Software", | |
"Creative Software", "Creative Software", "Creative Software", "Creative Software", "Creative Software", | |
"Creative Software", "Creative Software", "Creative Software", "Creative Software", "Creative Software" | |
], | |
"Cyber Approved": [random.choice([True, False]) for _ in range(50)], | |
"Accessibility Approved": [random.choice([True, False]) for _ in range(50)], | |
"Privacy Approved": [random.choice([True, False]) for _ in range(50)], | |
"Review Date": [random_date() for _ in range(50)] | |
} | |
return pd.DataFrame(products) | |
# Enhanced function to filter the catalog based on multiple attributes | |
def filter_catalog(catalog, search_query=None, cyber_approved=None, accessibility_approved=None, privacy_approved=None): | |
filtered = catalog | |
if search_query: | |
# Filtering by checking if the search_query is in any of the specified attributes | |
filtered = filtered[filtered.apply(lambda row: search_query.lower() in str(row).lower(), axis=1)] | |
if cyber_approved is not None: | |
filtered = filtered[filtered["Cyber Approved"] == cyber_approved] | |
if accessibility_approved is not None: | |
filtered = filtered[filtered["Accessibility Approved"] == accessibility_approved] | |
if privacy_approved is not None: | |
filtered = filtered[filtered["Privacy Approved"] == privacy_approved] | |
return filtered | |
catalog = load_catalog() | |
# Streamlit app layout | |
st.title("Enterprise Software Product Catalog") | |
st.write("This is the source of truth for app approval statuses within the enterprise.") | |
# Custom CSS for styling product details | |
st.markdown(""" | |
<style> | |
.detail-box { | |
border-radius: 10px; | |
padding: 10px; | |
margin: 5px 0; | |
background-color: #f0f2f6; | |
} | |
.detail-header { | |
color: #4f8bf9; | |
font-weight: bold; | |
} | |
.detail-text { | |
color: #333; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Display product names as clickable items | |
for index, row in catalog.iterrows(): | |
if st.button(row['Product Name'], key=str(index)): | |
with st.expander("Product Details", expanded=True): | |
st.markdown(f"<div class='detail-box'>" | |
f"<p class='detail-header'>Product Name:</p> <p class='detail-text'>{row['Product Name']}</p>" | |
f"<p class='detail-header'>Category:</p> <p class='detail-text'>{row['Category']}</p>" | |
f"<p class='detail-header'>Cyber Approved:</p> <p class='detail-text'>{'Yes' if row['Cyber Approved'] else 'No'}</p>" | |
f"<p class='detail-header'>Accessibility Approved:</p> <p class='detail-text'>{'Yes' if row['Accessibility Approved'] else 'No'}</p>" | |
f"<p class='detail-header'>Privacy Approved:</p> <p class='detail-text'>{'Yes' if row['Privacy Approved'] else 'No'}</p>" | |
f"<p class='detail-header'>Review Date:</p> <p class='detail-text'>{row['Review Date']}</p>" | |
"</div>", unsafe_allow_html=True) | |
# Note: Streamlit's layout is linear and stateless; this approach recreates the UI on each interaction. | |
# Sidebar for Advanced Search and Filtering | |
with st.sidebar.expander("Advanced Search Options"): | |
search_query = st.text_input("Search by Any Attribute", key='search_query') | |
cyber_approved = st.checkbox("Cyber Approved", key='cyber_approved') | |
accessibility_approved = st.checkbox("Accessibility Approved", key='accessibility_approved') | |
privacy_approved = st.checkbox("Privacy Approved", key='privacy_approved') | |
# Apply the enhanced filter based on user input | |
filtered_catalog = filter_catalog(catalog, search_query, cyber_approved, accessibility_approved, privacy_approved) | |
# Display the filtered product catalog | |
st.header("Product Catalog") | |
st.dataframe(filtered_catalog) |