Spaces:
Herc
/
Runtime error

BBallv5 / app.py
Herc's picture
Update app.py
a7e3d96 verified
raw
history blame
13.7 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import date, timedelta
import random
# [All the scheduling functions and analytics functions here]
# 1. create_schedule
def create_schedule(num_teams, num_conferences, num_inter_games):
full_schedule = []
for i in range(num_conferences):
conference_name = chr(65 + i) # 'A', 'B', 'C', 'D', ...
combined_schedule = combine_schedules(conference_name, num_teams, num_inter_games)
assigned_dates = assign_dates_to_matches(combined_schedule)
full_schedule.extend(assigned_dates)
return pd.DataFrame(full_schedule, columns=["Team 1", "Team 2", "Date"])
# 2. combine_schedules
def combine_schedules(conference_name, num_teams, num_inter_games):
intra_conf_matches = generate_intra_conference_schedule(conference_name, num_teams)
inter_conf_matches = generate_inter_conference_schedule(conference_name, num_teams, num_inter_games)
return intra_conf_matches + inter_conf_matches
# 3. generate_intra_conference_schedule
def generate_intra_conference_schedule(conference_name, num_teams):
teams = [f"{conference_name}{i}" for i in range(1, num_teams + 1)]
matches = []
for i in range(len(teams)):
for j in range(i+1, len(teams)):
matches.append((teams[i], teams[j]))
matches.append((teams[j], teams[i])) # Home and away
return matches
# 4. generate_inter_conference_schedule
def generate_inter_conference_schedule(conference_name, num_teams, num_inter_games):
current_conf_teams = [f"{conference_name}{i}" for i in range(1, num_teams + 1)]
other_confs = [chr(65 + i) for i in range(4) if chr(65 + i) != conference_name]
other_conf_teams = [f"{conf}{i}" for conf in other_confs for i in range(1, num_teams + 1)]
matches = []
for team in current_conf_teams:
opponents = random.sample(other_conf_teams, num_inter_games)
for opp in opponents:
matches.append((team, opp))
return matches
# 5. assign_dates_to_matches
def assign_dates_to_matches(matches):
start_date = date(2022, 11, 6)
end_date = date(2023, 3, 1)
available_dates = [start_date + timedelta(days=i) for i in range((end_date - start_date).days) if (start_date + timedelta(days=i)).weekday() in [0, 2, 3, 5]]
random.shuffle(available_dates)
# Ensure cyclic reuse of dates
extended_dates = available_dates * (len(matches) // len(available_dates) + 1)
return [(match[0], match[1], extended_dates[i]) for i, match in enumerate(matches)]
# 6. generate_mock_historical_data
def generate_mock_historical_data(num_teams, num_conferences, num_inter_games, start_date, end_date):
full_schedule = []
for i in range(num_conferences):
conference_name = chr(65 + i)
combined_schedule = combine_schedules(conference_name, num_teams, num_inter_games)
shuffled_dates = assign_dates_to_matches(combined_schedule)
random.shuffle(shuffled_dates)
for match in shuffled_dates:
full_schedule.append({
"Team 1": match[0],
"Team 2": match[1],
"Date": match[2]
})
return pd.DataFrame(full_schedule)
# Team Workload Analysis
def team_workload_analysis(schedule_df):
# Check if the DataFrame is None
if schedule_df is None:
plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.',
horizontalalignment='center', verticalalignment='center',
fontsize=14, color='red')
plt.axis('off')
plt.tight_layout()
plt.show()
return
"""Generate a bar chart showing the number of matches each team has per week."""
schedule_df['Week'] = schedule_df['Date'].dt.isocalendar().week
team_counts = schedule_df.groupby(['Week', 'Team 1']).size().unstack().fillna(0)
# Plot
team_counts.plot(kind='bar', stacked=True, figsize=(15, 7), cmap='Oranges')
plt.title('Team Workload Analysis')
plt.ylabel('Number of Matches')
plt.xlabel('Week Number')
plt.tight_layout()
plt.legend(title='Teams', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
# Match Distribution
def match_distribution(schedule_df):
# Check if the DataFrame is None
if schedule_df is None:
plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.',
horizontalalignment='center', verticalalignment='center',
fontsize=14, color='red')
plt.axis('off')
plt.tight_layout()
plt.show()
return
"""Generate a histogram showing match distribution across months."""
schedule_df['Month'] = schedule_df['Date'].dt.month_name()
month_order = ['November', 'December', 'January', 'February', 'March']
# Plot
plt.figure(figsize=(10, 6))
sns.countplot(data=schedule_df, x='Month', order=month_order, palette='Oranges_r')
plt.title('Match Distribution Across Months')
plt.ylabel('Number of Matches')
plt.xlabel('Month')
plt.tight_layout()
plt.show()
# Inter-Conference Match Analysis
def inter_conference_analysis(schedule_df):
# Check if the DataFrame is None
if schedule_df is None:
plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.',
horizontalalignment='center', verticalalignment='center',
fontsize=14, color='red')
plt.axis('off')
plt.tight_layout()
plt.show()
return
"""Generate a heatmap showing inter-conference match frequencies."""
# Extract the conference from the team names
schedule_df['Conference 1'] = schedule_df['Team 1'].str[0]
schedule_df['Conference 2'] = schedule_df['Team 2'].str[0]
# Filter out intra-conference matches
inter_conference_df = schedule_df[schedule_df['Conference 1'] != schedule_df['Conference 2']]
# Create a crosstab for the heatmap
heatmap_data = pd.crosstab(inter_conference_df['Conference 1'], inter_conference_df['Conference 2'])
# Ensure every conference combination has a value
all_conferences = schedule_df['Conference 1'].unique()
for conf in all_conferences:
if conf not in heatmap_data.columns:
heatmap_data[conf] = 0
if conf not in heatmap_data.index:
heatmap_data.loc[conf] = 0
heatmap_data = heatmap_data.sort_index().sort_index(axis=1)
# Plot
plt.figure(figsize=(8, 6))
sns.heatmap(heatmap_data, annot=True, cmap='Oranges', linewidths=.5, cbar_kws={'label': 'Number of Matches'})
plt.title('Inter-Conference Match Analysis')
plt.ylabel('Conference 1')
plt.xlabel('Conference 2')
plt.show()
# Commissioner Analytics
def commissioner_analytics(schedule_df, commissioners):
# Check if the DataFrame is None
if schedule_df is None:
plt.figure(figsize=(10, 6))
plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.',
horizontalalignment='center', verticalalignment='center',
fontsize=14, color='red')
plt.axis('off')
plt.tight_layout()
plt.show()
return
"""Generate a bar chart showing matches overseen by each commissioner."""
# Assuming each commissioner oversees a specific conference
comm_dict = {f"Conference {chr(65+i)}": comm for i, comm in enumerate(commissioners)}
schedule_df['Commissioner'] = schedule_df['Conference 1'].map(comm_dict)
# Count matches overseen by each commissioner
commissioner_counts = schedule_df['Commissioner'].value_counts()
# Plot using matplotlib
plt.figure(figsize=(10, 6))
plt.bar(commissioner_counts.index, commissioner_counts.values, color='orange')
plt.title('Matches Overseen by Each Commissioner')
plt.ylabel('Number of Matches')
plt.xlabel('Commissioner')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# Streamlit App
st.title("Basketball Game Schedule Generator")
st.set_option('deprecation.showPyplotGlobalUse', False)
if 'num_teams' not in st.session_state:
st.session_state.num_teams = 10
if 'num_conferences' not in st.session_state:
st.session_state.num_conferences = 4
if 'num_inter_games' not in st.session_state:
st.session_state.num_inter_games = 3
# Initialize session state for schedule_df and st.session_state.historical_data
if 'schedule_df' not in st.session_state:
st.session_state.schedule_df = None
if 'st.session_state.historical_data' not in st.session_state:
st.session_state.historical_data = None
if st.session_state.historical_data is None:
st.session_state.historical_data = generate_mock_historical_data(st.session_state.num_teams, st.session_state.num_conferences, st.session_state.num_inter_games, date(2022, 11, 6), date(2023, 3, 1))
st.session_state.historical_data['Date'] = pd.to_datetime(st.session_state.historical_data['Date'])
# Configuration UI
st.header("Configuration")
st.session_state.num_teams = st.number_input("Number of teams per conference:", min_value=2, value=st.session_state.num_teams)
st.session_state.num_conferences = st.number_input("Number of conferences:", min_value=2, value=st.session_state.num_conferences)
st.session_state.num_inter_games = st.number_input("Number of inter-conference games per team:", min_value=1, value=st.session_state.num_inter_games)
commissioners = st.multiselect("Add commissioners:", options=[], default=[])
add_commissioner = st.text_input("New commissioner name:")
if add_commissioner:
commissioners.append(add_commissioner)
st.session_state.commissioners = commissioners # Make sure to update session state
# Schedule Generation
if st.button("Generate Schedule"):
st.session_state.schedule_df = create_schedule(st.session_state.num_teams, st.session_state.num_conferences, st.session_state.num_inter_games)
if st.session_state.schedule_df is not None and not st.session_state.schedule_df.empty:
st.session_state.schedule_df['Date'] = pd.to_datetime(st.session_state.schedule_df['Date'])
st.success("Schedule generated successfully!")
print("Stored schedule in session state.")
else:
st.error("Failed to generate schedule. Please check input parameters.")
# Schedule Viewing
st.header("View Schedule")
# Generating the list of conferences dynamically based on the number of conferences in session state
conference_options = ["All"] + [f"Conference {chr(65+i)}" for i in range(st.session_state.num_conferences)]
conference_selector = st.selectbox("Select conference to view schedule:", options=conference_options)
# Check if the schedule DataFrame exists and is not empty
if st.session_state.schedule_df is not None and not st.session_state.schedule_df.empty:
if conference_selector == "All":
# Display the entire schedule if "All" is selected
st.dataframe(st.session_state.schedule_df)
else:
# Filter the schedule based on the selected conference
filtered_schedule = st.session_state.schedule_df[
(st.session_state.schedule_df["Team 1"].str.startswith(conference_selector)) |
(st.session_state.schedule_df["Team 2"].str.startswith(conference_selector))
]
if filtered_schedule.empty:
st.write(f"No matches found for {conference_selector}.") # Provide feedback if no matches are found
else:
st.dataframe(filtered_schedule) # Display the filtered schedule
else:
# Display a message if no schedule is available
st.write("No schedule available. Please generate the schedule.")
# Analytics & Comparisons
st.header("Analytics & Comparisons")
analytics_option = st.selectbox("Choose an analysis type:", ["Team Workload Analysis", "Match Distribution", "Inter-Conference Match Analysis", "Commissioner Analytics"])
st.session_state.historical_data['Date'] = pd.to_datetime(st.session_state.historical_data['Date'])
if analytics_option == "Team Workload Analysis":
if st.session_state.historical_data is not None and not st.session_state.historical_data.empty:
st.subheader("Historical Data")
st.pyplot(team_workload_analysis(st.session_state.historical_data))
if st.session_state.schedule_df is not None and not st.session_state.schedule_df.empty:
st.subheader("Current Data")
st.pyplot(team_workload_analysis(st.session_state.schedule_df))
else:
st.warning("No current data to display. Generate the schedule first.")
elif analytics_option == "Match Distribution":
st.subheader("Historical Data")
st.pyplot(match_distribution(st.session_state.historical_data))
st.subheader("Current Data")
st.pyplot(match_distribution(st.session_state.schedule_df))
elif analytics_option == "Inter-Conference Match Analysis":
st.subheader("Historical Data")
st.pyplot(inter_conference_analysis(st.session_state.historical_data))
st.subheader("Current Data")
st.pyplot(inter_conference_analysis(st.session_state.schedule_df))
elif analytics_option == "Commissioner Analytics":
st.subheader("Historical Data")
st.pyplot(commissioner_analytics(st.session_state.historical_data, commissioners))
st.subheader("Current Data")
st.pyplot(commissioner_analytics(st.session_state.schedule_df, commissioners))
else:
st.warning("Please generate the schedule first before viewing analytics.")
# Export functionality can be added later