import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from datetime import date, timedelta import random # [All the scheduling functions and analytics functions here] import pandas as pd import random from itertools import combinations, product from datetime import date, timedelta def generate_schedule_from_data(conference_team_df, available_dates): # Extract unique conferences conferences = conference_team_df['Conference'].unique() # Ensure 'Conference' and 'Team' columns are present if 'Conference' not in conference_team_df or 'Team' not in conference_team_df: raise ValueError("The CSV file must contain 'Conference' and 'Team' columns.") # Generate intra-conference matches intra_conference_matches = [] for conf in conferences: teams_in_conf = conference_team_df[conference_team_df['Conference'] == conf]['Team'].tolist() # Each team plays each other team in their conference twice matches = list(combinations(teams_in_conf, 2)) intra_conference_matches.extend(matches) intra_conference_matches.extend([(team2, team1) for team1, team2 in matches]) # Generate inter-conference matches (limit these to 1 per team) inter_conference_matches = [] for team, conference in zip(conference_team_df['Team'], conference_team_df['Conference']): other_conferences = [conf for conf in conferences if conf != conference] other_teams = conference_team_df[conference_team_df['Conference'].isin(other_conferences)]['Team'].tolist() matches = random.sample([(team, other_team) for other_team in other_teams], 1) inter_conference_matches.extend(matches) # Combine the matches combined_schedule = intra_conference_matches + inter_conference_matches scheduled_matches = assign_dates_to_matches(combined_schedule, available_dates) # Convert to DataFrame schedule_df = pd.DataFrame(scheduled_matches, columns=['Team 1', 'Team 2', 'Date']) schedule_df['Conference 1'] = schedule_df['Team 1'].map(conference_team_df.set_index('Team').to_dict()['Conference']) schedule_df['Conference 2'] = schedule_df['Team 2'].map(conference_team_df.set_index('Team').to_dict()['Conference']) return schedule_df # To use this function, load your data into a DataFrame and call this function: # df = pd.read_csv('path/to/your/csv') # schedule_df = generate_schedule_from_data(df) # 6. generate_mock_historical_data def generate_mock_historical_data(schedule_df): # Generate random scores for each team in each game schedule_df['Score 1'] = [random.randint(50, 100) for _ in range(len(schedule_df))] schedule_df['Score 2'] = [random.randint(50, 100) for _ in range(len(schedule_df))] # Assume the historical data is from the previous year schedule_df['Date'] = schedule_df['Date'] - pd.DateOffset(years=1) return schedule_df # To use this function, pass the generated schedule DataFrame: # historical_data = generate_mock_historical_data(schedule_df) # Assign dates to matches def generate_available_dates(start_date, num_days=300): available_dates = [start_date + timedelta(days=i) for i in range(num_days) if (start_date + timedelta(days=i)).weekday() in [0, 2, 3, 5]] return available_dates def assign_dates_to_matches(matches, available_dates): num_dates = len(available_dates) return [(match[0], match[1], available_dates[i % num_dates]) for i, match in enumerate(matches)] # Team Workload Analysis def team_workload_analysis(schedule_df, conference_team_df): # Check if the DataFrame is None if schedule_df is None: plt.figure(figsize=(10, 6)) plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.', horizontalalignment='center', verticalalignment='center', fontsize=14, color='red') plt.axis('off') plt.tight_layout() plt.show() return """Generate a bar chart showing the number of matches each team has per week.""" schedule_df['Week'] = schedule_df['Date'].dt.isocalendar().week team_counts = schedule_df.groupby(['Week', 'Team 1']).size().unstack().fillna(0) # Plot team_counts.plot(kind='bar', stacked=True, figsize=(15, 7), cmap='Oranges') plt.title('Team Workload Analysis') plt.ylabel('Number of Matches') plt.xlabel('Week Number') plt.tight_layout() plt.legend(title='Teams', bbox_to_anchor=(1.05, 1), loc='upper left') plt.show() # Match Distribution def match_distribution(schedule_df, conference_team_df): # Check if the DataFrame is None if schedule_df is None: plt.figure(figsize=(10, 6)) plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.', horizontalalignment='center', verticalalignment='center', fontsize=14, color='red') plt.axis('off') plt.tight_layout() plt.show() return """Generate a histogram showing match distribution across months.""" schedule_df['Month'] = schedule_df['Date'].dt.month_name() month_order = ['November', 'December', 'January', 'February', 'March'] # Plot plt.figure(figsize=(10, 6)) sns.countplot(data=schedule_df, x='Month', order=month_order, palette='Oranges_r') plt.title('Match Distribution Across Months') plt.ylabel('Number of Matches') plt.xlabel('Month') plt.tight_layout() plt.show() # Inter-Conference Match Analysis def inter_conference_analysis(schedule_df, conference_team_df): if schedule_df is None: plt.figure(figsize=(10, 6)) plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.', horizontalalignment='center', verticalalignment='center', fontsize=14, color='red') plt.axis('off') plt.tight_layout() plt.show() return # Mapping teams to their conferences from the conference_team_df team_to_conference = conference_team_df.set_index('Team')['Conference'].to_dict() schedule_df['Conference 1'] = schedule_df['Team 1'].map(team_to_conference) schedule_df['Conference 2'] = schedule_df['Team 2'].map(team_to_conference) # Filtering out the intra-conference matches inter_conference_df = schedule_df[schedule_df['Conference 1'] != schedule_df['Conference 2']] # Creating a crosstab for the heatmap heatmap_data = pd.crosstab(inter_conference_df['Conference 1'], inter_conference_df['Conference 2']) # Ensuring every conference combination has a value all_conferences = set(conference_team_df['Conference']) for conf in all_conferences: if conf not in heatmap_data.columns: heatmap_data[conf] = 0 if conf not in heatmap_data.index: heatmap_data.loc[conf] = 0 heatmap_data = heatmap_data.loc[sorted(all_conferences), sorted(all_conferences)] # Plotting the heatmap plt.figure(figsize=(8, 6)) sns.heatmap(heatmap_data, annot=True, cmap='Oranges', linewidths=.5, cbar_kws={'label': 'Number of Matches'}) plt.title('Inter-Conference Match Analysis') plt.ylabel('Conference 1') plt.xlabel('Conference 2') plt.show() # Commissioner Analytics def commissioner_analytics(schedule_df, conference_team_df, commissioners): # Check if the DataFrame is None if schedule_df is None: plt.figure(figsize=(10, 6)) plt.text(0.5, 0.5, 'Please generate the schedule first before viewing analytics.', horizontalalignment='center', verticalalignment='center', fontsize=14, color='red') plt.axis('off') plt.tight_layout() plt.show() return """Generate a bar chart showing matches overseen by each commissioner.""" # Assuming each commissioner oversees a specific conference comm_dict = {conf: comm for conf, comm in zip(conference_team_df['Conference'].unique(), commissioners)} schedule_df['Commissioner'] = schedule_df['Conference 1'].map(comm_dict) # Count matches overseen by each commissioner commissioner_counts = schedule_df['Commissioner'].value_counts() # Plot using matplotlib plt.figure(figsize=(10, 6)) plt.bar(commissioner_counts.index, commissioner_counts.values, color='orange') plt.title('Matches Overseen by Each Commissioner') plt.ylabel('Number of Matches') plt.xlabel('Commissioner') plt.xticks(rotation=45) plt.tight_layout() plt.show() # Streamlit App st.title("Basketball Game Schedule Generator") st.set_option('deprecation.showPyplotGlobalUse', False) # UI for CSV File Uploader uploaded_file = st.file_uploader("Choose a CSV file", type=['csv']) start_date = date(2022, 11, 6) available_dates = generate_available_dates(start_date) # Load the Uploaded CSV File if uploaded_file is not None: st.session_state.df = pd.read_csv(uploaded_file) st.write('Uploaded CSV file:') st.write(st.session_state.df) # Generate Schedule using Uploaded Data if st.button("Generate Schedule"): st.session_state.schedule_df = generate_schedule_from_data(st.session_state.df, available_dates) st.write('Generated Schedule:') st.write(st.session_state.schedule_df) else: st.warning("Please upload a CSV file to proceed.") # Initialize session state for schedule_df and st.session_state.historical_data if 'schedule_df' not in st.session_state: st.session_state.schedule_df = None if 'st.session_state.historical_data' not in st.session_state: st.session_state.historical_data = None #if st.session_state.historical_data is None: # st.session_state.historical_data = generate_mock_historical_data(st.session_state.schedule_df) # st.session_state.historical_data['Date'] = pd.to_datetime(st.session_state.historical_data['Date']) if st.button("Generate Mock Historical Data"): # Only generate historical data if it hasn’t been generated already if st.session_state.historical_data is None: # Ensure that the schedule has been generated before generating historical data if st.session_state.schedule_df is not None: # Generate the mock historical data based on the generated schedule st.session_state.historical_data = generate_mock_historical_data(st.session_state.schedule_df) st.write('Generated Mock Historical Data:') st.write(st.session_state.historical_data) else: st.warning("Please generate the schedule first before generating mock historical data.") # Configuration UI st.header("Configuration") commissioners = st.multiselect("Add commissioners:", options=[], default=[]) add_commissioner = st.text_input("New commissioner name:") if add_commissioner: commissioners.append(add_commissioner) # Schedule Viewing st.header("View Schedule") if st.session_state.schedule_df is not None: # Fetching the unique conferences from the schedule DataFrame conferences = st.session_state.schedule_df['Conference 1'].unique() conference_selector = st.selectbox("Select conference to view schedule:", options=["All"] + list(conferences)) if conference_selector == "All": st.dataframe(st.session_state.schedule_df) else: # Filtering the schedule based on the selected conference filtered_schedule = st.session_state.schedule_df[(st.session_state.schedule_df["Conference 1"] == conference_selector) | (st.session_state.schedule_df["Conference 2"] == conference_selector)] st.dataframe(filtered_schedule) else: st.warning("Schedule has not been generated yet.") # Analytics & Comparisons st.header("Analytics & Comparisons") analytics_option = st.selectbox("Choose an analysis type:", ["Team Workload Analysis", "Match Distribution", "Inter-Conference Match Analysis", "Commissioner Analytics"]) if st.session_state.historical_data is not None: st.session_state.historical_data['Date'] = pd.to_datetime(st.session_state.historical_data['Date']) else: st.error("Historical data has not been generated yet.") if analytics_option == "Team Workload Analysis": st.subheader("Historical Data") st.pyplot(team_workload_analysis(st.session_state.historical_data, st.session_state.df)) st.subheader("Current Data") st.pyplot(team_workload_analysis(st.session_state.schedule_df, st.session_state.df)) elif analytics_option == "Match Distribution": st.subheader("Historical Data") st.pyplot(match_distribution(st.session_state.historical_data, st.session_state.df)) st.subheader("Current Data") st.pyplot(match_distribution(st.session_state.schedule_df, st.session_state.df)) elif analytics_option == "Inter-Conference Match Analysis": st.subheader("Historical Data") st.pyplot(inter_conference_analysis(st.session_state.historical_data, st.session_state.df)) st.subheader("Current Data") st.pyplot(inter_conference_analysis(st.session_state.schedule_df, st.session_state.df)) elif analytics_option == "Commissioner Analytics": st.subheader("Historical Data") st.pyplot(commissioner_analytics(st.session_state.historical_data, st.session_state.df, commissioners)) st.subheader("Current Data") st.pyplot(commissioner_analytics(st.session_state.schedule_df, st.session_state.df, commissioners)) else: st.warning("Please generate the schedule first before viewing analytics.") # Export functionality can be added later