Abhaykoul's picture
Update app.py
7cbe8ed verified
raw
history blame
28.8 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import threading
import queue
import time
import spaces
import sys
from io import StringIO
import re
# Model configuration
model_name = "HelpingAI/Dhanishtha-2.0-preview"
# Global variables for model and tokenizer
model = None
tokenizer = None
def load_model():
"""Load the model and tokenizer"""
global model, tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading model...")
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
)
print("Model loaded successfully!")
class StreamCapture:
"""Capture streaming output from TextStreamer"""
def __init__(self):
self.text_queue = queue.Queue()
self.captured_text = ""
def write(self, text):
"""Capture written text"""
if text and text.strip():
self.captured_text += text
self.text_queue.put(text)
return len(text)
def flush(self):
"""Flush method for compatibility"""
pass
def get_text(self):
"""Get all captured text"""
return self.captured_text
def reset(self):
"""Reset the capture"""
self.captured_text = ""
while not self.text_queue.empty():
try:
self.text_queue.get_nowait()
except queue.Empty:
break
def format_thinking_text(text):
"""Format text to properly display <think> and <ser> tags in Gradio with styled borders"""
if not text:
return text
# More sophisticated formatting for thinking and SER blocks
formatted_text = text
# Handle thinking blocks with proper HTML-like styling for Gradio
thinking_pattern = r'<think>(.*?)</think>'
def replace_thinking_block(match):
thinking_content = match.group(1).strip()
# Use HTML div with inline CSS for blue border styling like HelpingAI
return f'''
<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);">
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">🧠</span> Think
</div>
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;">
{thinking_content}
</div>
</div>
'''
# Handle SER blocks with purple/violet styling and structured formatting
ser_pattern = r'<ser>(.*?)</ser>'
def replace_ser_block(match):
ser_content = match.group(1).strip()
# Parse structured SER content if it follows the pattern
ser_lines = ser_content.split('\n')
formatted_content = []
for line in ser_lines:
line = line.strip()
if not line:
continue
# Check if line has the "Key ==> Value" pattern
if ' ==> ' in line:
parts = line.split(' ==> ', 1)
if len(parts) == 2:
key = parts[0].strip()
value = parts[1].strip()
formatted_content.append(f'<div style="margin: 8px 0;"><strong style="color: #8e44ad;">{key}:</strong> <span style="color: #2c3e50;">{value}</span></div>')
else:
formatted_content.append(f'<div style="margin: 4px 0; color: #2c3e50;">{line}</div>')
else:
formatted_content.append(f'<div style="margin: 4px 0; color: #2c3e50;">{line}</div>')
if not formatted_content:
formatted_content = [f'<div style="color: #2c3e50; line-height: 1.6;">{ser_content}</div>']
content_html = ''.join(formatted_content)
# Use HTML div with inline CSS for purple border styling for SER
return f'''
<div style="border-left: 4px solid #8e44ad; background: linear-gradient(135deg, #f8f4ff 0%, #ede7f6 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(142, 68, 173, 0.15); border: 1px solid rgba(142, 68, 173, 0.2);">
<div style="color: #8e44ad; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;">
<span style="margin-right: 8px;">💜</span> SER (Structured Emotional Reasoning)
</div>
<div style="line-height: 1.6; font-size: 14px;">
{content_html}
</div>
</div>
'''
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL)
formatted_text = re.sub(ser_pattern, replace_ser_block, formatted_text, flags=re.DOTALL)
# Clean up any remaining raw tags that might not have been caught
formatted_text = re.sub(r'</?think>', '', formatted_text)
formatted_text = re.sub(r'</?ser>', '', formatted_text)
return formatted_text.strip()
@spaces.GPU()
def generate_response(message, history, max_tokens, temperature, top_p):
"""Generate streaming response with improved TextStreamer"""
global model, tokenizer
if model is None or tokenizer is None:
yield "Model is still loading. Please wait..."
return
# Prepare conversation history
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
# Add current message
messages.append({"role": "user", "content": message})
# Apply chat template
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize input
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Create stream capture
stream_capture = StreamCapture()
# Create TextStreamer with our capture - don't skip special tokens to preserve <think> and <ser>
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False)
# Temporarily redirect the streamer's output
original_stdout = sys.stdout
# Generation parameters
generation_kwargs = {
**model_inputs,
"max_new_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"streamer": streamer,
}
# Start generation in a separate thread
def generate():
try:
# Redirect stdout to capture streamer output
sys.stdout = stream_capture
with torch.no_grad():
model.generate(**generation_kwargs)
except Exception as e:
stream_capture.text_queue.put(f"Error: {str(e)}")
finally:
# Restore stdout
sys.stdout = original_stdout
stream_capture.text_queue.put(None) # Signal end
thread = threading.Thread(target=generate)
thread.start()
# Stream the results with formatting
generated_text = ""
while True:
try:
new_text = stream_capture.text_queue.get(timeout=30)
if new_text is None:
break
generated_text += new_text
# Format and yield the current text with <think> and <ser> blocks
formatted_text = format_thinking_text(generated_text)
yield formatted_text
except queue.Empty:
break
thread.join(timeout=1)
# Final yield with complete formatted text
if generated_text:
final_text = format_thinking_text(generated_text)
yield final_text
else:
yield "No response generated."
def chat_interface(message, history, max_tokens, temperature, top_p):
"""Main chat interface with improved streaming"""
if not message.strip():
return history, ""
# Add user message to history
history.append([message, ""])
# Generate response with streaming
for partial_response in generate_response(message, history[:-1], max_tokens, temperature, top_p):
history[-1][1] = partial_response
yield history, ""
return history, ""
# Load model on startup
print("Initializing model...")
load_model()
# Custom CSS for modern, professional styling
custom_css = """
/* Import Google Fonts */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&family=JetBrains+Mono:wght@400;500&display=swap');
/* Global styling */
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
}
/* Main container styling */
.main {
background: rgba(255, 255, 255, 0.95);
backdrop-filter: blur(20px);
border-radius: 24px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
margin: 20px;
padding: 32px;
border: 1px solid rgba(255, 255, 255, 0.2);
}
/* Header styling */
.gradio-markdown h1 {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-weight: 700;
font-size: 3rem;
text-align: center;
margin-bottom: 1rem;
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.gradio-markdown h3 {
color: #4a5568;
font-weight: 600;
margin-top: 1.5rem;
margin-bottom: 0.5rem;
}
/* Chatbot styling */
.chatbot {
font-size: 15px;
font-family: 'Inter', sans-serif;
background: #ffffff;
border-radius: 20px;
border: 1px solid #e2e8f0;
box-shadow: 0 8px 32px rgba(0,0,0,0.08);
overflow: hidden;
}
.chatbot .message {
padding: 16px 20px;
margin: 8px 12px;
border-radius: 16px;
line-height: 1.6;
box-shadow: 0 2px 8px rgba(0,0,0,0.06);
transition: all 0.2s ease;
}
.chatbot .message:hover {
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
/* User message styling */
.chatbot .message.user {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
margin-left: 15%;
border-bottom-right-radius: 6px;
box-shadow: 0 4px 16px rgba(102, 126, 234, 0.3);
}
/* Assistant message styling */
.chatbot .message.bot {
background: linear-gradient(135deg, #f8fafc 0%, #e2e8f0 100%);
color: #2d3748;
margin-right: 15%;
border-bottom-left-radius: 6px;
border: 1px solid #e2e8f0;
}
/* Enhanced thinking and SER block styling */
.thinking-block, .ser-block {
border-radius: 12px;
padding: 16px 20px;
margin: 16px 0;
font-family: 'Inter', sans-serif;
box-shadow: 0 4px 12px rgba(0,0,0,0.08);
position: relative;
overflow: hidden;
}
.thinking-block::before, .ser-block::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 3px;
background: linear-gradient(90deg, #4a90e2, #357abd);
}
/* Input styling */
.gradio-textbox {
border-radius: 16px;
border: 2px solid #e2e8f0;
transition: all 0.3s ease;
font-family: 'Inter', sans-serif;
padding: 16px 20px;
font-size: 15px;
background: #ffffff;
box-shadow: 0 2px 8px rgba(0,0,0,0.04);
}
.gradio-textbox:focus {
border-color: #667eea;
box-shadow: 0 0 0 4px rgba(102, 126, 234, 0.1);
outline: none;
}
/* Button styling */
.gradio-button {
border-radius: 14px;
font-weight: 600;
font-family: 'Inter', sans-serif;
transition: all 0.3s ease;
padding: 12px 24px;
font-size: 14px;
letter-spacing: 0.5px;
border: none;
cursor: pointer;
position: relative;
overflow: hidden;
}
.gradio-button.primary {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
box-shadow: 0 4px 16px rgba(102, 126, 234, 0.3);
}
.gradio-button.primary:hover {
transform: translateY(-2px);
box-shadow: 0 8px 24px rgba(102, 126, 234, 0.4);
}
.gradio-button.secondary {
background: linear-gradient(135deg, #f7fafc 0%, #edf2f7 100%);
color: #4a5568;
border: 1px solid #e2e8f0;
}
.gradio-button.secondary:hover {
background: linear-gradient(135deg, #edf2f7 0%, #e2e8f0 100%);
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
/* Slider styling */
.gradio-slider {
margin: 12px 0;
}
.gradio-slider input[type="range"] {
-webkit-appearance: none;
height: 6px;
border-radius: 3px;
background: linear-gradient(135deg, #e2e8f0 0%, #cbd5e0 100%);
outline: none;
}
.gradio-slider input[type="range"]::-webkit-slider-thumb {
-webkit-appearance: none;
appearance: none;
width: 20px;
height: 20px;
border-radius: 50%;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
cursor: pointer;
box-shadow: 0 2px 8px rgba(102, 126, 234, 0.3);
transition: all 0.2s ease;
}
.gradio-slider input[type="range"]::-webkit-slider-thumb:hover {
transform: scale(1.1);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4);
}
/* Examples styling */
.gradio-examples {
margin-top: 24px;
background: rgba(255, 255, 255, 0.7);
backdrop-filter: blur(10px);
border-radius: 16px;
padding: 20px;
border: 1px solid rgba(255, 255, 255, 0.2);
}
.gradio-examples .gradio-button {
background: rgba(255, 255, 255, 0.9);
border: 1px solid #e2e8f0;
color: #4a5568;
font-size: 13px;
padding: 12px 16px;
margin: 4px;
border-radius: 12px;
transition: all 0.2s ease;
backdrop-filter: blur(10px);
}
.gradio-examples .gradio-button:hover {
background: rgba(255, 255, 255, 1);
color: #2d3748;
transform: translateY(-1px);
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
}
/* Code block styling */
pre {
background: linear-gradient(135deg, #2d3748 0%, #4a5568 100%);
color: #e2e8f0;
border-radius: 12px;
padding: 20px;
overflow-x: auto;
font-family: 'JetBrains Mono', 'Consolas', 'Monaco', monospace;
font-size: 14px;
line-height: 1.5;
box-shadow: 0 4px 16px rgba(0,0,0,0.1);
border: 1px solid #4a5568;
}
/* Sidebar styling */
.gradio-column {
background: rgba(255, 255, 255, 0.8);
backdrop-filter: blur(10px);
border-radius: 16px;
padding: 20px;
margin: 8px;
border: 1px solid rgba(255, 255, 255, 0.2);
box-shadow: 0 4px 16px rgba(0,0,0,0.05);
}
/* Footer styling */
.gradio-markdown hr {
border: none;
height: 1px;
background: linear-gradient(90deg, transparent, #e2e8f0, transparent);
margin: 2rem 0;
}
/* Responsive design */
@media (max-width: 768px) {
.main {
margin: 10px;
padding: 20px;
border-radius: 16px;
}
.gradio-markdown h1 {
font-size: 2rem;
}
.chatbot .message.user,
.chatbot .message.bot {
margin-left: 5%;
margin-right: 5%;
}
}
/* Loading animation */
.loading {
display: inline-block;
width: 20px;
height: 20px;
border: 3px solid rgba(102, 126, 234, 0.3);
border-radius: 50%;
border-top-color: #667eea;
animation: spin 1s ease-in-out infinite;
}
@keyframes spin {
to { transform: rotate(360deg); }
}
/* Scroll styling */
::-webkit-scrollbar {
width: 8px;
}
::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: linear-gradient(135deg, #5a6fd8 0%, #6a4190 100%);
}
"""
# Create Gradio interface with modern design
with gr.Blocks(
title="🤖 Dhanishtha-2.0-preview | Advanced Reasoning AI",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="purple",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
font_mono=gr.themes.GoogleFont("JetBrains Mono")
),
css=custom_css,
head="<link rel='icon' href='🤖' type='image/svg+xml'>"
) as demo:
# Header Section
gr.HTML("""
<div style="text-align: center; padding: 2rem 0; background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%); border-radius: 20px; margin-bottom: 2rem; border: 1px solid rgba(102, 126, 234, 0.2);">
<h1 style="margin: 0; font-size: 3.5rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 800;">
🤖 Dhanishtha-2.0-preview
</h1>
<p style="font-size: 1.2rem; color: #64748b; margin: 1rem 0; font-weight: 500;">
Advanced Reasoning AI with Transparent Thinking Process
</p>
<div style="display: flex; justify-content: center; gap: 2rem; flex-wrap: wrap; margin-top: 1.5rem;">
<div style="background: rgba(74, 144, 226, 0.1); padding: 0.8rem 1.5rem; border-radius: 12px; border: 1px solid rgba(74, 144, 226, 0.2);">
<span style="color: #4a90e2; font-weight: 600;">🧠 Multi-step Reasoning</span>
</div>
<div style="background: rgba(142, 68, 173, 0.1); padding: 0.8rem 1.5rem; border-radius: 12px; border: 1px solid rgba(142, 68, 173, 0.2);">
<span style="color: #8e44ad; font-weight: 600;">💜 Emotional Intelligence</span>
</div>
<div style="background: rgba(34, 197, 94, 0.1); padding: 0.8rem 1.5rem; border-radius: 12px; border: 1px solid rgba(34, 197, 94, 0.2);">
<span style="color: #22c55e; font-weight: 600;">🔄 Real-time Streaming</span>
</div>
</div>
</div>
""")
# Main Chat Interface
with gr.Row(equal_height=True):
with gr.Column(scale=4, min_width=600):
# Chat Area
with gr.Group():
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
bubble_full_width=False,
height=650,
show_copy_button=True,
show_share_button=True,
avatar_images=(
"https://raw.githubusercontent.com/gradio-app/gradio/main/gradio/themes/utils/profile_avatar.png",
"🤖"
),
render_markdown=True,
sanitize_html=False, # Allow HTML for thinking blocks
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False}
],
elem_classes=["modern-chatbot"]
)
# Input Section
with gr.Group():
with gr.Row():
msg = gr.Textbox(
container=False,
placeholder="💭 Ask me anything! I'll show you my thinking and emotional reasoning process...",
label="",
autofocus=True,
scale=8,
lines=1,
max_lines=5,
elem_classes=["modern-input"]
)
with gr.Column(scale=1, min_width=120):
send_btn = gr.Button(
"🚀 Send",
variant="primary",
size="lg",
elem_classes=["send-button"]
)
clear_btn = gr.Button(
"🗑️ Clear",
variant="secondary",
size="sm",
elem_classes=["clear-button"]
)
# Settings Sidebar
with gr.Column(scale=1, min_width=350):
with gr.Group():
gr.HTML("""
<div style="text-align: center; padding: 1rem; background: linear-gradient(135deg, rgba(102, 126, 234, 0.1) 0%, rgba(118, 75, 162, 0.1) 100%); border-radius: 12px; margin-bottom: 1rem;">
<h3 style="margin: 0; color: #667eea; font-weight: 600;">⚙️ Generation Settings</h3>
</div>
""")
max_tokens = gr.Slider(
minimum=1,
maximum=40960,
value=2048,
step=1,
label="🎯 Max Tokens",
info="Maximum number of tokens to generate",
elem_classes=["modern-slider"]
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="🌡️ Temperature",
info="Controls randomness in generation",
elem_classes=["modern-slider"]
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="🎲 Top-p (Nucleus Sampling)",
info="Controls diversity of generation",
elem_classes=["modern-slider"]
)
with gr.Row():
stop_btn = gr.Button(
"⏹️ Stop Generation",
variant="stop",
size="sm",
elem_classes=["stop-button"]
)
# Model Information Panel
with gr.Group():
gr.HTML("""
<div style="background: linear-gradient(135deg, rgba(34, 197, 94, 0.1) 0%, rgba(59, 130, 246, 0.1) 100%); border-radius: 12px; padding: 1.5rem; border: 1px solid rgba(34, 197, 94, 0.2);">
<h3 style="margin: 0 0 1rem 0; color: #22c55e; font-weight: 600;">📊 Model Information</h3>
<div style="color: #64748b; line-height: 1.6;">
<strong style="color: #1e293b;">Model:</strong> HelpingAI/Dhanishtha-2.0-preview<br>
<strong style="color: #1e293b;">Type:</strong> Advanced Reasoning LLM<br>
<strong style="color: #1e293b;">Features:</strong> Multi-step reasoning, emotional intelligence<br>
<strong style="color: #1e293b;">Special:</strong> Transparent thinking process with &lt;think&gt; and &lt;ser&gt; blocks
</div>
</div>
""")
# Performance Stats (placeholder)
with gr.Group():
gr.HTML("""
<div style="background: linear-gradient(135deg, rgba(168, 85, 247, 0.1) 0%, rgba(236, 72, 153, 0.1) 100%); border-radius: 12px; padding: 1.5rem; border: 1px solid rgba(168, 85, 247, 0.2);">
<h3 style="margin: 0 0 1rem 0; color: #a855f7; font-weight: 600;">⚡ Performance</h3>
<div style="color: #64748b; line-height: 1.6;">
<strong style="color: #1e293b;">Status:</strong> <span style="color: #22c55e;">Active ✅</span><br>
<strong style="color: #1e293b;">Response Mode:</strong> Streaming<br>
<strong style="color: #1e293b;">Reasoning:</strong> Enhanced<br>
<strong style="color: #1e293b;">Context:</strong> 8192 tokens
</div>
</div>
""")
# Example Prompts Section
with gr.Group():
gr.HTML("""
<div style="text-align: center; padding: 1.5rem; background: linear-gradient(135deg, rgba(245, 158, 11, 0.1) 0%, rgba(251, 146, 60, 0.1) 100%); border-radius: 16px; margin: 2rem 0; border: 1px solid rgba(245, 158, 11, 0.2);">
<h3 style="margin: 0 0 1rem 0; color: #f59e0b; font-weight: 600;">💡 Example Prompts</h3>
<p style="color: #64748b; margin: 0;">Try these prompts to see the thinking and emotional reasoning process in action!</p>
</div>
""")
gr.Examples(
examples=[
["Hello! Can you introduce yourself and show me your thinking and emotional reasoning process?"],
["Solve this step by step: What is 15% of 240? Show your complete reasoning."],
["Explain quantum entanglement in simple terms with your thought process"],
["Write a short Python function to find the factorial of a number and explain your approach"],
["What are the pros and cons of renewable energy? Include your emotional perspective using SER."],
["Help me understand the difference between AI and machine learning with examples"],
["Create a haiku about artificial intelligence and explain your creative process"],
["Explain why the sky is blue using physics principles with step-by-step thinking"],
["What's your favorite type of conversation and why? Show your emotional reasoning using SER format."],
["How do you handle complex ethical dilemmas? Walk me through your thinking and emotional process."],
["Tell me about a time when you had to change your mind about something. Use both thinking and SER blocks."],
["What makes you feel most fulfilled in conversations? Use structured emotional reasoning."]
],
inputs=msg,
label="",
examples_per_page=6,
elem_classes=["modern-examples"]
)
# Event handlers
def clear_chat():
"""Clear the chat history"""
return [], ""
# Message submission events
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, temperature, top_p],
outputs=[chatbot, msg],
concurrency_limit=1,
show_progress="minimal"
)
# Clear chat event
clear_btn.click(
clear_chat,
outputs=[chatbot, msg],
show_progress=False
)
# Footer Section
gr.HTML("""
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, rgba(71, 85, 105, 0.1) 0%, rgba(100, 116, 139, 0.1) 100%); border-radius: 16px; margin-top: 2rem; border: 1px solid rgba(71, 85, 105, 0.2);">
<h3 style="color: #475569; font-weight: 600; margin-bottom: 1rem;">🔧 Technical Specifications</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; color: #64748b; line-height: 1.6;">
<div>
<strong style="color: #1e293b;">Model:</strong> HelpingAI/Dhanishtha-2.0-preview<br>
<strong style="color: #1e293b;">Framework:</strong> Transformers + Gradio
</div>
<div>
<strong style="color: #1e293b;">Features:</strong> Real-time streaming<br>
<strong style="color: #1e293b;">Reasoning:</strong> Multi-step with transparency
</div>
<div>
<strong style="color: #1e293b;">Special Tags:</strong> &lt;think&gt; and &lt;ser&gt; blocks<br>
<strong style="color: #1e293b;">Sampling:</strong> Custom temperature & top-p
</div>
</div>
<hr style="border: none; height: 1px; background: linear-gradient(90deg, transparent, #e2e8f0, transparent); margin: 1.5rem 0;">
<p style="color: #64748b; margin: 0; font-size: 14px;">
🚀 <strong>Built with ❤️ using Gradio and Transformers</strong> |
💡 The first LLM to show transparent thinking and emotional reasoning processes
</p>
</div>
""")
if __name__ == "__main__":
demo.queue(
max_size=30,
default_concurrency_limit=2
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
quiet=False,
favicon_path="🤖",
show_tips=True,
enable_queue=True
)