Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import spaces | |
import re | |
# Model configuration | |
model_name = "HelpingAI/Dhanishtha-2.0-preview" | |
# Global variables for model and tokenizer | |
model = None | |
tokenizer = None | |
def load_model(): | |
"""Load the model and tokenizer""" | |
global model, tokenizer | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Ensure pad token is set | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
print("Loading model...") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto", | |
trust_remote_code=True | |
) | |
print("Model loaded successfully!") | |
def format_thinking_text(text): | |
"""Format text to properly display <think> and <ser> tags in Gradio with styled borders""" | |
if not text: | |
return text | |
# More sophisticated formatting for thinking and ser blocks | |
formatted_text = text | |
# Handle thinking blocks with blue styling | |
thinking_pattern = r'<think>(.*?)</think>' | |
def replace_thinking_block(match): | |
thinking_content = match.group(1).strip() | |
return f''' | |
<div style="border-left: 4px solid #4a90e2; background: linear-gradient(135deg, #f0f8ff 0%, #e6f3ff 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(74, 144, 226, 0.15); border: 1px solid rgba(74, 144, 226, 0.2);"> | |
<div style="color: #4a90e2; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;"> | |
<span style="margin-right: 8px;">๐ง </span> Think | |
</div> | |
<div style="color: #2c3e50; line-height: 1.6; font-size: 14px;"> | |
{thinking_content} | |
</div> | |
</div> | |
''' | |
# Handle ser blocks with green styling | |
ser_pattern = r'<ser>(.*?)</ser>' | |
def replace_ser_block(match): | |
ser_content = match.group(1).strip() | |
return f''' | |
<div style="border-left: 4px solid #28a745; background: linear-gradient(135deg, #f0fff4 0%, #e6ffed 100%); padding: 16px 20px; margin: 16px 0; border-radius: 12px; font-family: 'Segoe UI', sans-serif; box-shadow: 0 2px 8px rgba(40, 167, 69, 0.15); border: 1px solid rgba(40, 167, 69, 0.2);"> | |
<div style="color: #28a745; font-weight: 600; margin-bottom: 10px; display: flex; align-items: center; font-size: 14px;"> | |
<span style="margin-right: 8px;">๐</span> Ser | |
</div> | |
<div style="color: #155724; line-height: 1.6; font-size: 14px;"> | |
{ser_content} | |
</div> | |
</div> | |
''' | |
# Apply both patterns | |
formatted_text = re.sub(thinking_pattern, replace_thinking_block, formatted_text, flags=re.DOTALL) | |
formatted_text = re.sub(ser_pattern, replace_ser_block, formatted_text, flags=re.DOTALL) | |
# Clean up any remaining raw tags | |
formatted_text = re.sub(r'</?(?:think|ser)>', '', formatted_text) | |
return formatted_text.strip() | |
def generate_response(message, history, max_tokens, temperature, top_p): | |
"""Generate streaming response without threading""" | |
global model, tokenizer | |
if model is None or tokenizer is None: | |
yield "Model is still loading. Please wait..." | |
return | |
# Prepare conversation history | |
messages = [] | |
# Handle both old tuple format and new message format | |
for item in history: | |
if isinstance(item, dict): | |
# New message format | |
messages.append(item) | |
elif isinstance(item, (list, tuple)) and len(item) == 2: | |
# Old tuple format | |
user_msg, assistant_msg = item | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
# Add current message | |
messages.append({"role": "user", "content": message}) | |
# Apply chat template | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
# Tokenize input | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
try: | |
with torch.no_grad(): | |
# Use transformers streaming with custom approach | |
generated_text = "" | |
current_input_ids = model_inputs["input_ids"] | |
current_attention_mask = model_inputs["attention_mask"] | |
for _ in range(max_tokens): | |
# Generate next token | |
outputs = model( | |
input_ids=current_input_ids, | |
attention_mask=current_attention_mask, | |
use_cache=True | |
) | |
# Get logits for the last token | |
logits = outputs.logits[0, -1, :] | |
# Apply temperature | |
if temperature != 1.0: | |
logits = logits / temperature | |
# Apply top-p sampling | |
if top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone() | |
sorted_indices_to_remove[0] = 0 | |
indices_to_remove = sorted_indices[sorted_indices_to_remove] | |
logits[indices_to_remove] = float('-inf') | |
# Sample next token | |
probs = torch.softmax(logits, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
# Check for EOS token | |
if next_token.item() == tokenizer.eos_token_id: | |
break | |
# Decode the new token (preserve special tokens like <think>) | |
new_token_text = tokenizer.decode(next_token, skip_special_tokens=False) | |
generated_text += new_token_text | |
# Format and yield the current text | |
formatted_text = format_thinking_text(generated_text) | |
yield formatted_text | |
# Update inputs for next iteration | |
current_input_ids = torch.cat([current_input_ids, next_token.unsqueeze(0)], dim=-1) | |
current_attention_mask = torch.cat([current_attention_mask, torch.ones((1, 1), device=model.device)], dim=-1) | |
except Exception as e: | |
yield f"Error generating response: {str(e)}" | |
return | |
# Final yield with complete formatted text | |
final_text = format_thinking_text(generated_text) if generated_text else "No response generated." | |
yield final_text | |
def chat_interface(message, history, max_tokens, temperature, top_p): | |
"""Main chat interface with improved streaming""" | |
if not message.strip(): | |
return history, "" | |
# Add user message to history in the new message format | |
history.append({"role": "user", "content": message}) | |
# Add placeholder for assistant response | |
history.append({"role": "assistant", "content": ""}) | |
# Generate response with streaming | |
for partial_response in generate_response(message, history[:-2], max_tokens, temperature, top_p): | |
history[-1]["content"] = partial_response | |
yield history, "" | |
return history, "" | |
# Load model on startup | |
print("Initializing model...") | |
load_model() | |
# Minimal CSS - only for think and ser blocks | |
custom_css = """ | |
/* Only essential styling for think and ser blocks */ | |
.chatbot { | |
font-family: system-ui, -apple-system, sans-serif; | |
} | |
""" | |
# Create advanced Gradio interface with professional design | |
with gr.Blocks( | |
title="๏ฟฝ Dhanishtha-2.0-preview | Advanced Reasoning AI", | |
theme=gr.themes.Soft(), | |
css=custom_css, | |
head=""" | |
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | |
<meta name="description" content="Chat with Dhanishtha-2.0-preview - The world's first LLM with multi-step reasoning capabilities"> | |
""" | |
) as demo: | |
# Simple Header | |
gr.Markdown( | |
""" | |
# ๐ง Dhanishtha-2.0-preview Chat | |
Chat with the **HelpingAI/Dhanishtha-2.0-preview** model - Advanced Reasoning AI with Multi-Step Thinking | |
### Features: | |
- ๐ง **Think Blocks**: Internal reasoning process (blue styling) | |
- ๐ **Ser Blocks**: Emotional understanding (green styling) | |
- โก **Real-time Streaming**: Token-by-token generation | |
- ๐ฏ **Step-by-step Solutions**: Detailed problem solving | |
""" | |
) | |
# Main Chat Interface | |
with gr.Row(): | |
with gr.Column(scale=4): | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
type='messages', | |
height=600, | |
show_copy_button=True, | |
show_share_button=True, | |
avatar_images=("๐ค", "๐ค"), | |
render_markdown=True, | |
sanitize_html=False, # Allow HTML for thinking and ser blocks | |
latex_delimiters=[ | |
{"left": "$$", "right": "$$", "display": True}, | |
{"left": "$", "right": "$", "display": False} | |
] | |
) | |
# Simple input section | |
with gr.Row(): | |
msg = gr.Textbox( | |
container=False, | |
placeholder="Ask me anything! I'll show you my thinking and reasoning process...", | |
label="Message", | |
autofocus=True, | |
lines=1, | |
max_lines=3, | |
scale=7 | |
) | |
send_btn = gr.Button("Send", variant="primary", scale=1) | |
clear_btn = gr.Button("Clear", variant="secondary", scale=1) | |
with gr.Column(scale=1, min_width=300): | |
gr.Markdown("### โ๏ธ Generation Parameters") | |
max_tokens = gr.Slider( | |
minimum=50, | |
maximum=8192, | |
value=2048, | |
step=50, | |
label="Max Tokens", | |
info="Maximum number of tokens to generate" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
info="Higher = more creative, Lower = more focused" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p", | |
info="Nucleus sampling threshold" | |
) | |
gr.Markdown("### ๐ Model Info") | |
gr.Markdown( | |
""" | |
**Model**: HelpingAI/Dhanishtha-2.0-preview | |
**Type**: Reasoning LLM with thinking blocks | |
**Features**: Multi-step reasoning, self-evaluation | |
**Blocks**: Think (blue) + Ser (green) | |
""" | |
) | |
# Examples Section | |
gr.Examples( | |
examples=[ | |
["Solve this step by step: What is 15% of 240?"], | |
["How many letter 'r' are in the words 'strawberry' and 'raspberry'?"], | |
["Hello! Can you introduce yourself and show me how you think?"], | |
["Explain quantum entanglement in simple terms"], | |
["Write a Python function to find the factorial of a number"], | |
["What are the pros and cons of renewable energy?"], | |
["What's the difference between AI and machine learning?"], | |
["Create a haiku about artificial intelligence"], | |
["Why is the sky blue? Explain using physics principles"], | |
["Compare bubble sort and quick sort algorithms"] | |
], | |
inputs=msg, | |
label="Example Prompts - Try these to see the thinking process!", | |
examples_per_page=5 | |
) | |
# Event handlers | |
def clear_chat(): | |
"""Clear the chat history""" | |
return [], "" | |
# Message submission events | |
msg.submit( | |
chat_interface, | |
inputs=[msg, chatbot, max_tokens, temperature, top_p], | |
outputs=[chatbot, msg], | |
concurrency_limit=1, | |
show_progress="minimal" | |
) | |
send_btn.click( | |
chat_interface, | |
inputs=[msg, chatbot, max_tokens, temperature, top_p], | |
outputs=[chatbot, msg], | |
concurrency_limit=1, | |
show_progress="minimal" | |
) | |
# Clear chat event | |
clear_btn.click( | |
clear_chat, | |
outputs=[chatbot, msg], | |
show_progress=False | |
) | |
# Simple Footer | |
gr.Markdown( | |
""" | |
--- | |
### ๐ง Technical Details | |
- **Model**: HelpingAI/Dhanishtha-2.0-preview | |
- **Reasoning**: Multi-step thinking with `<think>` and `<ser>` blocks | |
**Note**: This interface streams responses token by token and formats thinking blocks for better readability. | |
""" | |
) | |
if __name__ == "__main__": | |
# Launch with enhanced configuration | |
demo.queue( | |
max_size=20, | |
default_concurrency_limit=1 | |
).launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
show_error=True, | |
quiet=False | |
) |