HelloSun commited on
Commit
7655f87
·
verified ·
1 Parent(s): 299407d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -120
app.py CHANGED
@@ -1,154 +1,76 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
- import torch
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
 
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
 
 
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
  ).images[0]
50
-
51
- return image, seed
52
-
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
 
58
  ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
 
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
 
 
 
71
  with gr.Row():
72
- prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
75
  max_lines=1,
76
  placeholder="Enter your prompt",
77
  container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
99
-
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
 
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
  import gradio as gr
2
+ import openvino.runtime as ov
3
+ from optimum.intel.openvino import OVStableDiffusionPipeline
4
 
5
+ model_id = "HelloSun/chilloutmix_NiPrunedFp32Fix-openvino"
 
 
6
 
7
+ # 確保這些是有效的尺寸
8
+ HIGH = 512
9
+ WIDTH = 512
10
 
11
+ pipe = OVStableDiffusionPipeline.from_pretrained(model_id)
 
 
 
12
 
13
+ negative_prompt = "(worst quality, low quality, lowres), zombie, interlocked fingers,"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ def infer(prompt, negative_prompt):
16
  image = pipe(
17
  prompt=prompt,
18
  negative_prompt=negative_prompt,
19
+ width=WIDTH, # 使用 WIDTH
20
+ height=HIGH, # 使用 HIGH
21
+ guidance_scale=7.5,
22
+ num_inference_steps=30,
23
+ num_images_per_prompt=1,
24
  ).images[0]
25
+ return image
 
 
26
 
27
  examples = [
28
+ "Sailor Chibi Moon, Katsura Masakazu style",
29
+ "1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
30
+ "A cute kitten, Tinkle style.",
31
+ "(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
32
  ]
33
 
34
  css = """
35
  #col-container {
36
  margin: 0 auto;
37
+ max-width: 520px;
38
  }
39
  """
40
 
41
+ power_device = "CPU"
42
+
43
  with gr.Blocks(css=css) as demo:
44
  with gr.Column(elem_id="col-container"):
45
+ gr.Markdown(f"""
46
+ # Disty0/SoteMixV3 {HIGH}x{WIDTH}
47
+ Currently running on {power_device}.
48
+ """)
49
+
50
  with gr.Row():
51
+ prompt_input = gr.Text(
52
  label="Prompt",
53
  show_label=False,
54
  max_lines=1,
55
  placeholder="Enter your prompt",
56
  container=False,
57
+ )
58
+ run_button = gr.Button("Run", scale=0)
59
+
 
60
  result = gr.Image(label="Result", show_label=False)
61
 
62
+ gr.Examples(
63
+ examples=examples,
64
+ fn=infer,
65
+ inputs=[prompt_input],
66
+ outputs=[result]
67
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
+ run_button.click(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  fn=infer,
71
+ inputs=[prompt_input],
72
+ outputs=[result]
 
 
 
 
 
 
 
 
 
73
  )
74
 
75
+ demo.queue().launch()
76
+