import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline import torch from huggingface_hub import snapshot_download import openvino.runtime as ov from typing import Optional, Dict model_id = "Disty0/LCM_SoteMix" batch_size = -1 class CustomOVModelVaeDecoder(OVModelVaeDecoder): def __init__( self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None, ): super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir) pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""}) taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino") pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir) pipe.reshape( batch_size=-1, height=512, width=512, num_images_per_prompt=1) pipe.compile() def infer(prompt,negative_prompt): image = pipe( prompt = prompt+"score_8_up,score_7_up,score_6_up,score_9,score_8_up,score_7,masterpiece,best quality,source_anime,bangs,", negative_prompt = "score_6,score_5,score_4,source_furry,pathway,walkway,face mask,heterochromia,\ tattoos,muscular,deformed iris,deformed pupils,long body,long neck,text,error,print,signature,\ logo,watermark,deformed,distorted,disfigured,bad anatomy,wrong anatomy,ugly,disgusting,\ cropped,crooked teeth,multiple views,bad proportions,gross proportions,cloned face,\ worst quality,low quality,normal quality,bad quality,lowres,poorly drawn,semi-realistic,\ 3d,render,cg,cgi,imperfect,partial,unfinished,incomplete,monochrome,grayscale,sepia,fat,\ wrinkle,fat leg,fat ass,blurry,hazy,sagging breasts,longbody,lowres,\ bad anatomy,bad hands,missing fingers,extra digit,fewer digits,worst quality,\ low quality,normal quality,watermark,artist name,signature,(bad anatomy)), ((bad art)),\ (((bad proportions))), (b&w), (black/white), (black and white), blurry, body out of frame,\ canvas frame, cloned face, ((close up)), cross-eye, ((deformed)), ((disfigured)), (((duplicate))), \ (((extra arms))), extra fingers, (((extra legs))), ((extra limbs)), (fused fingers), gross proportions, \ ((morbid)), (malformed limbs), ((missing arms)), ((missing legs)), mutated, mutated hands, \ (((mutation))), ((mutilated)), (out of frame), ((poorly drawn face)), poorly drawn feet, \ ((poorly drawn hands)), tiling, (too many fingers), ((ugly)), wierd colors, (((long neck))), \ ugly, words, wrinkles, writing", width = 512, height = 512, guidance_scale=1.0, num_inference_steps=8, num_images_per_prompt=1, ).images[0] return image examples = [ "A cute kitten, Japanese cartoon style.", "A sweet family, dad stands next to mom, mom holds baby girl.", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Disty0/LCM_SoteMix 512x512 Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) gr.Examples( examples = examples, inputs = [prompt] ) run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()