File size: 2,552 Bytes
8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 188c7ea 8f691f9 52ee8e4 1cce0f0 de27268 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 5a4047d 8f691f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict
model_id = "Disty0/LCM_SoteMix"
batch_size = -1
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
def __init__(
self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
):
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
pipe.reshape( batch_size=-1, height=512, width=512, num_images_per_prompt=1)
pipe.compile()
def infer(prompt,negative_prompt, num_inference_steps):
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = 512,
height = 512,
guidance_scale=1.0,
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
).images[0]
return image
examples = [
"A cute kitten, Japanese cartoon style.",
"A sweet family, dad stands next to mom, mom holds baby girl.",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Disty0/LCM_SoteMix 512x512
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt,negative_prompt,4],
outputs = [result]
)
demo.queue().launch() |