File size: 3,421 Bytes
8f691f9 1cce0f0 8f691f9 1cce0f0 8f691f9 46b3e30 17110ca f4fc7fd 3d3da57 8f83107 dea1924 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 dea1924 ad687bc 55485d5 a17b4a1 46637c1 2977066 1cce0f0 edfa13e 1cce0f0 e442d7e 8f691f9 52ee8e4 f240343 dea1924 1cce0f0 503b512 1cce0f0 8f691f9 1cce0f0 8f691f9 1cce0f0 0cc25eb 8f691f9 1cce0f0 8f691f9 f240343 8f691f9 1cce0f0 8f691f9 7193aee 8f691f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict
model_id = "Disty0/SoteMixV3"
#model_id = "Disty0/sotediffusion-v2" #不可
#1024*512 記憶體不足
HIGH=512
WIDTH=512
batch_size = -1
class CustomOVModelVaeDecoder(OVModelVaeDecoder):
def __init__(
self, model: ov.Model, parent_model: OVBaseModel, ov_config: Optional[Dict[str, str]] = None, model_dir: str = None,
):
super(OVModelVaeDecoder, self).__init__(model, parent_model, ov_config, "vae_decoder", model_dir)
pipe = OVStableDiffusionPipeline.from_pretrained(model_id, compile = False, ov_config = {"CACHE_DIR":""})
taesd_dir = snapshot_download(repo_id="deinferno/taesd-openvino")
pipe.vae_decoder = CustomOVModelVaeDecoder(model = OVBaseModel.load_model(f"{taesd_dir}/vae_decoder/openvino_model.xml"), parent_model = pipe, model_dir = taesd_dir)
pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
#<shigure-ui-style>
pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
pipe.compile()
prompt=""
negative_prompt=""
def infer(prompt,negative_prompt):
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = HIGH,
height = WIDTH,
guidance_scale=1.0,
num_inference_steps=8,
num_images_per_prompt=1,
).images[0]
return image
examples = [
"A cute kitten, Japanese cartoon style.",
"A sweet family, dad stands next to mom, mom holds baby girl.",
"(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Disty0/LCM_SoteMix {HIGH}x{WIDTH}
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch() |