File size: 3,588 Bytes
e73f9c3
 
19cfd55
 
3d65110
 
 
19cfd55
 
e73f9c3
19cfd55
e73f9c3
19cfd55
 
 
 
 
 
8707dcd
19cfd55
 
258eed8
 
8707dcd
 
19cfd55
 
6c29290
8707dcd
19cfd55
e73f9c3
19cfd55
e73f9c3
19cfd55
e73f9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19cfd55
e73f9c3
19cfd55
e73f9c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d9dabb
 
 
 
 
 
 
e73f9c3
 
 
 
 
 
19cfd55
e73f9c3
19cfd55
e73f9c3
 
 
 
 
 
 
 
 
8707dcd
e73f9c3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import gradio as gr
import numpy as np
from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers import DiffusionPipeline


# model_id = "echarlaix/sdxl-turbo-openvino-int8"
# model_id = "echarlaix/LCM_Dreamshaper_v7-openvino"

#safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
#pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker)
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False)

batch_size, num_images, height, width = 1, 1, 512, 512
pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
pipeline.compile()

#TypeError: LatentConsistencyPipelineMixin.__call__() got an unexpected keyword argument 'negative_prompt'
#negative_prompt="easynegative,bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs, nsfw, nude, censored,  "
negative_prompt=""
def infer(prompt, negative_prompt, num_inference_steps):

    image = pipeline(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        # guidance_scale = guidance_scale,
        num_inference_steps = num_inference_steps, 
        width = width,
        height = height,
        num_images_per_prompt=num_images,
    ).images[0] 
    
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""


with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡
        """)

        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            #with gr.Row():
            # negative_prompt = gr.Text(
            #     label="Negative prompt",
            #     max_lines=1,
            #     placeholder="Enter a negative prompt",
            #     visible=True,
            # )
            
            with gr.Row():
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=5,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()