Spaces:
Runtime error
Runtime error
File size: 3,540 Bytes
e73f9c3 19cfd55 3d65110 19cfd55 e73f9c3 19cfd55 e73f9c3 19cfd55 258eed8 3d65110 0d9dabb 19cfd55 e73f9c3 258eed8 19cfd55 e73f9c3 19cfd55 e73f9c3 19cfd55 e73f9c3 19cfd55 e73f9c3 19cfd55 e73f9c3 0d9dabb e73f9c3 19cfd55 e73f9c3 19cfd55 e73f9c3 0d9dabb e73f9c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import gradio as gr
import numpy as np
from optimum.intel import OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers import DiffusionPipeline
# model_id = "echarlaix/sdxl-turbo-openvino-int8"
# model_id = "echarlaix/LCM_Dreamshaper_v7-openvino"
#safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
model_id = "OpenVINO/LCM_Dreamshaper_v7-int8-ov"
#pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False, safety_checker=safety_checker)
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, compile=False)
batch_size, num_images, height, width = 1, 1, 512, 512
pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images)
pipeline.compile()
#TypeError: LatentConsistencyPipelineMixin.__call__() got an unexpected keyword argument 'negative_prompt'
#negative_prompt="easynegative,bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs, nsfw, nude, censored, "
def infer(prompt, num_inference_steps):
image = pipeline(
prompt = prompt,
#negative_prompt = negative_prompt, #no negative_prompt keyword in LatentConsistencyPipelineMixin
# guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
num_images_per_prompt=num_images,
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Demo : [Fast LCM](https://huggingface.co/OpenVINO/LCM_Dreamshaper_v7-int8-ov) quantized with NNCF ⚡
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
#with gr.Row():
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=True,
# )
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=10,
step=1,
value=5,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, num_inference_steps],
outputs = [result]
)
demo.queue().launch() |