Spaces:
Running
Running
""" | |
curl -X GET http://localhost:7680/api/models | |
curl -X POST http://127.0.0.1:7680/hf/v1/chat/completions \ | |
-H "Content-Type: application/json" \ | |
-d '{ | |
"prompt": "你是什么模型?" | |
}' | |
""" | |
import json | |
import uuid # 用于生成随机用户 ID | |
import requests | |
from flask import Flask, request, Response | |
app = Flask(__name__) | |
# 全局字典用于保存用户的上下文对话 | |
user_contexts = {} | |
MAX_HISTORY_LENGTH = 15 # 最大上下文历史长度 | |
def get_models(): | |
models = { | |
"object": "list", | |
"data": [ | |
{"id": "Qwen2.5-72B", "object": "model", "created": 0, "owned_by": "Qwen"}, | |
{"id": "Llama-3.1-Nemotron-70B", "object": "model", "created": 0, "owned_by": "Nemotron"}, | |
{"id": "NVLM-D-72B", "object": "model", "created": 0, "owned_by": "NVDIA"}, | |
{"id": "DeepSeek-Coder-V2", "object": "model", "created": 0, "owned_by": "DeepSeek"}, | |
{"id": "Qwen2.5-Coder-32B", "object": "model", "created": 0, "owned_by": "Qwen"}, | |
] | |
} | |
return json.dumps(models) | |
def chat_completion( | |
user_prompt, user_id: str = None, system_prompt="You are a helpful assistant.", model="Qwen2.5-72B", | |
project="DecentralGPT", stream=False, temperature=0.3, max_tokens=1024, top_p=0.5, | |
frequency_penalty=0, presence_penalty=0): | |
"""处理用户请求并保留上下文""" | |
url = 'https://usa-chat.degpt.ai/api/v0/chat/completion/proxy' | |
headers = { | |
'accept': 'application/json', | |
'accept-language': 'en-US,en;q=0.9,zh-CN;q=0.8,zh;q=0.7', | |
'content-type': 'application/json', | |
'dnt': '1', | |
'origin': 'https://www.degpt.ai', | |
'priority': 'u=1, i', | |
'referer': 'https://www.degpt.ai/', | |
'sec-ch-ua': 'Google Chrome";v="131", "Chromium";v="131", "Not_A Brand";v="24"', | |
'sec-ch-ua-mobile': '?0', | |
'sec-ch-ua-platform': '"macOS"', | |
'sec-fetch-dest': 'empty', | |
'sec-fetch-mode': 'cors', | |
'sec-fetch-site': 'same-site', | |
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36' | |
} | |
# 初始化或更新用户的对话历史 | |
if user_id is not None: | |
if user_id not in user_contexts: | |
user_contexts[user_id] = [{"role": "system", "content": system_prompt}] | |
user_contexts[user_id].append({"role": "user", "content": user_prompt}) | |
# 检查是否需要修剪历史记录,保留 `system` 提示词 | |
while len(user_contexts[user_id]) > MAX_HISTORY_LENGTH: | |
# 删除最早的用户问题和系统回复,但保留 `system` 提示词 | |
if len(user_contexts[user_id]) > 2: | |
# 检查删除的条目是否有匹配的系统回复,如果没有,只删除用户输入 | |
if user_contexts[user_id][2]["role"] == "user": | |
user_contexts[user_id] = [user_contexts[user_id][0]] + user_contexts[user_id][2:] | |
else: | |
user_contexts[user_id] = [user_contexts[user_id][0]] + user_contexts[user_id][2:] | |
else: | |
break | |
messages = user_contexts[user_id] | |
else: | |
# 如果没有提供 user_id,不保留上下文 | |
messages = [{"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}] | |
payload = { | |
"model": model, | |
"messages": messages, | |
"project": project, | |
"stream": stream, | |
"temperature": temperature, | |
"max_tokens": max_tokens, | |
"top_p": top_p, | |
"frequency_penalty": frequency_penalty, | |
"presence_penalty": presence_penalty | |
} | |
try: | |
response = requests.post(url, headers=headers, json=payload) | |
response.encoding = 'utf-8' | |
response.raise_for_status() | |
## print(response.text) | |
# 获取响应并添加到上下文 | |
response_content = response.json()["choices"][0]["message"]["content"] | |
# print( | |
# f"=========== {user_id}:{user_prompt} ====================\r\n请求内容:{messages}\r\n完整响应:{response.text}") | |
# 将系统的回复添加到用户上下文中 | |
if user_id is not None: | |
user_contexts[user_id].append({"role": "assistant", "content": response_content}) | |
return response.text | |
except requests.exceptions.RequestException as e: | |
print(f"请求失败: {e}") | |
return "请求失败,请检查网络或参数配置。" | |
except (KeyError, IndexError) as e: | |
print(f"解析响应时出错: {e}") | |
return "解析响应内容失败。" | |
return {} | |
def models(): | |
"""返回可用模型列表""" | |
return get_models() | |
def chat_completion_api(): | |
"""处理用户请求并保留上下文""" | |
data = request.json | |
user_prompt = data.get("prompt") | |
user_id = data.get("user_id", str(uuid.uuid4())) # 如果未提供 user_id,生成随机值 | |
response_content = chat_completion( | |
user_prompt, | |
user_id=user_id | |
) | |
# maybe \uxxxx | |
# return jsonify(response_content) | |
## maybe \"xxx\" | |
# return Response( | |
# json.dumps(response_content, ensure_ascii=False), | |
# content_type="application/json; charset=utf-8" | |
# ) | |
# support Chinese | |
if isinstance(response_content, str): # 如果已经是 JSON 字符串 | |
return Response(response_content, content_type="application/json; charset=utf-8") | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=7860) | |