HelloAI1's picture
Update app.py
7a1f2b3 verified
raw
history blame
6.12 kB
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO
class Prodia:
def __init__(self, api_key, base=None):
self.base = base or "https://api.prodia.com/v1"
self.headers = {
"X-Prodia-Key": api_key
}
def generate(self, params):
response = self._post(f"{self.base}/sdxl/generate", params)
return response.json()
def get_job(self, job_id):
response = self._get(f"{self.base}/job/{job_id}")
return response.json()
def wait(self, job):
job_result = job
while job_result['status'] not in ['succeeded', 'failed']:
time.sleep(0.25)
job_result = self.get_job(job['job'])
return job_result
def list_models(self):
response = self._get(f"{self.base}/sdxl/models")
return response.json()
def list_samplers(self):
response = self._get(f"{self.base}/sdxl/samplers")
return response.json()
def _post(self, url, params):
headers = {
**self.headers,
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(params))
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def _get(self, url):
response = requests.get(url, headers=self.headers)
if response.status_code != 200:
raise Exception(f"Bad Prodia Response: {response.status_code}")
return response
def image_to_base64(image_path):
# Open the image with PIL
with Image.open(image_path) as image:
# Convert the image to bytes
buffered = BytesIO()
image.save(buffered, format="PNG") # You can change format to PNG if needed
# Encode the bytes to base64
img_str = base64.b64encode(buffered.getvalue())
return img_str.decode('utf-8') # Convert bytes to string
prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
result = prodia_client.generate({
"prompt": prompt,
"negative_prompt": negative_prompt,
"model": model,
"steps": steps,
"sampler": sampler,
"cfg_scale": cfg_scale,
"width": width,
"height": height,
"seed": seed
})
job = prodia_client.wait(result)
return job["imageUrl"]
css = """
/* Overall Styling */
body {
font-family: 'Arial', sans-serif;
}
.container {
display: flex;
flex-direction: column;
gap: 20px;
}
/* Image Output Area */
#image-output-container {
border: 2px solid #ccc;
border-radius: 8px;
overflow: hidden;
}
#image-output {
max-width: 100%;
height: auto;
}
/* Settings Section */
#settings {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
}
.setting-group {
border: 1px solid #ccc;
padding: 20px;
border-radius: 8px;
}
/* Button Styling */
#generate {
background-color: #007bff; /* Example - use your preferred color */
color: white;
padding: 15px 25px;
border: none;
border-radius: 5px;
cursor: pointer;
}
#generate:hover {
background-color: #0056b3; /* Darker shade on hover */
}
/* Responsive Design - Adjust breakpoints as needed */
@media screen and (max-width: 768px) {
#settings {
grid-template-columns: 1fr;
}
}
"""
with gr.Blocks(css=css) as demo:
with gr.Row():
gr.Markdown("<h1 style='text-align: center;'>Create Your Disney Pixar AI Poster</h1>", elem_id="title")
with gr.Row(elem_id="image-output-container"):
image_output = gr.Image(
value="https://cdn-uploads.huggingface.co/production/uploads/noauth/XWJyh9DhMGXrzyRJk7SfP.png",
label="Generated Image",
elem_id="image-output"
)
with gr.Row(elem_id="settings"):
with gr.Column(scale=1, min_width=300, elem_classes="setting-group"):
prompt = gr.Textbox(
"space warrior, beautiful, female, ultrarealistic, soft lighting, 8k",
placeholder="Enter your prompt here...",
show_label=False,
lines=3,
elem_id="prompt-input"
)
negative_prompt = gr.Textbox(
placeholder="Enter negative prompts (optional)...",
show_label=False,
lines=3,
value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly"
)
text_button = gr.Button("Generate", variant='primary', elem_id="generate")
with gr.Column(scale=1, min_width=300, elem_classes="setting-group"):
model = gr.Dropdown(
interactive=True,
value="sd_xl_base_1.0.safetensors [be9edd61]",
show_label=True,
label="Model",
choices=prodia_client.list_models()
)
sampler = gr.Dropdown(
value="DPM++ 2M Karras",
show_label=True,
label="Sampling Method",
choices=prodia_client.list_samplers()
)
steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
with gr.Column(scale=1, min_width=300, elem_classes="setting-group"):
width = gr.Slider(label="Width", minimum=512, maximum=1536, value=1024, step=8)
height = gr.Slider(label="Height", minimum=512, maximum=1536, value=1024, step=8)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
seed = gr.Number(label="Seed", value=-1)
text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
demo.queue(concurrency_count=24, max_size=32, api_open=False).launch(max_threads=128)