File size: 4,526 Bytes
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5683ad2
0f3978b
 
5bb086c
6dbc9d1
 
 
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ccc156
0f3978b
7ccc156
0f3978b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367fa57
 
0f3978b
7ccc156
 
 
 
 
 
 
 
367fa57
0f3978b
7ccc156
367fa57
0f3978b
7ccc156
 
367fa57
 
7ccc156
 
 
 
 
 
 
 
 
 
 
367fa57
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        response = self._post(f"{self.base}/sdxl/generate", params)
        return response.json()

    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sdxl/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sdxl/samplers")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image_path):
    with Image.open(image_path) as image:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue())
    return img_str.decode('utf-8')


prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))

def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]

css = """
#generate {
    height: 100%;
}
"""

# Define the Gradio interface
with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown("# Disney Pixar AI Poster Generator")
            gr.Markdown("Enter your prompt and adjust the settings to generate a Disney Pixar style AI poster.")
    
    with gr.Row():
        with gr.Column(scale=2):
            prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
            text_button = gr.Button("Generate", variant='primary', style={"min-width": "100%"})

        with gr.Column(scale=4):
            image_output = gr.Image(value="https://cdn-uploads.huggingface.co/production/uploads/noauth/XWJyh9DhMGXrzyRJk7SfP.png", label="Generated Image", style={"width": "100%", "height": "auto"})

    with gr.Row():
        with gr.Column(scale=2):
            model = gr.Dropdown(interactive=True, value="sd_xl_base_1.0.safetensors [be9edd61]", show_label=True, label="Stable Diffusion Checkpoint", style={"min-width": "100%"})
            sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", style={"min-width": "100%"})
            steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
            cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
            seed = gr.Number(label="Seed", value=-1)

        with gr.Column(scale=2):
            width = gr.Slider(label="Width", minimum=512, maximum=1536, value=1024, step=8)
            height = gr.Slider(label="Height", minimum=512, maximum=1536, value=1024, step=8)
            batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
            batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
            gr.Markdown("*Resolution Maximum: 1MP (1048576 px)*")

# Launch the Gradio interface
demo.launch()