Commit
·
c4ccf2e
1
Parent(s):
996905d
Update app.py
Browse files
app.py
CHANGED
@@ -207,6 +207,8 @@ form_explainer.header("Explainer Settings")
|
|
207 |
position_dep = form_explainer.checkbox("Check this if you want to take into account the position of a word in the interpretation", value = False)
|
208 |
number_samples = form_explainer.number_input("Enter the number of explainer peterbuted samples, higher creates a better explanation but takes longer - you should most likely increase this", value = 200)
|
209 |
char_based = form_explainer.checkbox("Check this if you want to use a character based explanier", value = False)
|
|
|
|
|
210 |
form_explainer.form_submit_button("Submit")
|
211 |
|
212 |
|
@@ -254,9 +256,9 @@ if task == "Classification":
|
|
254 |
target_feature_names = text_clf['clf'].classes_
|
255 |
#target_feature_names = pd.unique(df[labels_column_name])
|
256 |
target_feature_names_list = list(target_feature_names)
|
257 |
-
t_pred = te.explain_prediction(target_names = target_feature_names_list)
|
258 |
else:
|
259 |
-
t_pred = te.explain_prediction()
|
260 |
html = format_as_html(t_pred)
|
261 |
|
262 |
form_html = st.sidebar.form("html_size_form")
|
|
|
207 |
position_dep = form_explainer.checkbox("Check this if you want to take into account the position of a word in the interpretation", value = False)
|
208 |
number_samples = form_explainer.number_input("Enter the number of explainer peterbuted samples, higher creates a better explanation but takes longer - you should most likely increase this", value = 200)
|
209 |
char_based = form_explainer.checkbox("Check this if you want to use a character based explanier", value = False)
|
210 |
+
top_features = form_explainer.number_input("Enter the top number of features we want to show", value = 200)
|
211 |
+
top_targets = form_explainer.number_input("Enter the top number of targets we want to show explanations of", value = 5)
|
212 |
form_explainer.form_submit_button("Submit")
|
213 |
|
214 |
|
|
|
256 |
target_feature_names = text_clf['clf'].classes_
|
257 |
#target_feature_names = pd.unique(df[labels_column_name])
|
258 |
target_feature_names_list = list(target_feature_names)
|
259 |
+
t_pred = te.explain_prediction(target_names = target_feature_names_list, top = top_features, top_targets = top_targets)
|
260 |
else:
|
261 |
+
t_pred = te.explain_prediction(top = top_features, top_targets = top_targets)
|
262 |
html = format_as_html(t_pred)
|
263 |
|
264 |
form_html = st.sidebar.form("html_size_form")
|