Commit
·
9848e77
1
Parent(s):
02b1aaf
Update app.py
Browse files
app.py
CHANGED
@@ -123,7 +123,7 @@ if task == "Clustering":
|
|
123 |
('cluster', KMeans(n_clusters = n_clusters, n_init = n_init, max_iter = max_iter)),
|
124 |
])
|
125 |
|
126 |
-
@st.cache
|
127 |
def fit_text_clf(X, y):
|
128 |
text_clf.fit(X, y)
|
129 |
return text_clf
|
@@ -154,10 +154,16 @@ form_explainer.form_submit_button("Submit")
|
|
154 |
|
155 |
te = TextExplainer(random_state=42, char_based=char_based, n_samples = number_samples, position_dependent=position_dep)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
157 |
input_choice = st.checkbox("Check this if you want to enter your own example to explain", value = False)
|
158 |
if input_choice == False:
|
159 |
record_to_explain = st.number_input("Enter the index of the document from the original dataset to interpret", value = 30)
|
160 |
-
te.fit(df[column_name][record_to_explain], text_clf.predict_proba)
|
|
|
161 |
if task == "Classification":
|
162 |
st.write("Ground truth label")
|
163 |
st.write(df[labels_column_name][record_to_explain])
|
@@ -172,7 +178,8 @@ if input_choice == False:
|
|
172 |
st.write(model_prediction)
|
173 |
else:
|
174 |
record_to_explain = st.text_area("Enter the example document to explain", value = text_example)
|
175 |
-
te.fit(record_to_explain, text_clf.predict_proba)
|
|
|
176 |
if task == "Classification":
|
177 |
st.write("Model prediction")
|
178 |
model_prediction = text_clf.predict([record_to_explain])
|
|
|
123 |
('cluster', KMeans(n_clusters = n_clusters, n_init = n_init, max_iter = max_iter)),
|
124 |
])
|
125 |
|
126 |
+
@st.cache(allow_output_mutation=True)
|
127 |
def fit_text_clf(X, y):
|
128 |
text_clf.fit(X, y)
|
129 |
return text_clf
|
|
|
154 |
|
155 |
te = TextExplainer(random_state=42, char_based=char_based, n_samples = number_samples, position_dependent=position_dep)
|
156 |
|
157 |
+
@st.cache(allow_output_mutation=True)
|
158 |
+
def fit_text_explainer(X, predict_proba):
|
159 |
+
te.fit(X, predict_proba)
|
160 |
+
return te
|
161 |
+
|
162 |
input_choice = st.checkbox("Check this if you want to enter your own example to explain", value = False)
|
163 |
if input_choice == False:
|
164 |
record_to_explain = st.number_input("Enter the index of the document from the original dataset to interpret", value = 30)
|
165 |
+
#te.fit(df[column_name][record_to_explain], text_clf.predict_proba)
|
166 |
+
fit_text_explainer(df[column_name][record_to_explain], text_clf.predict_proba)
|
167 |
if task == "Classification":
|
168 |
st.write("Ground truth label")
|
169 |
st.write(df[labels_column_name][record_to_explain])
|
|
|
178 |
st.write(model_prediction)
|
179 |
else:
|
180 |
record_to_explain = st.text_area("Enter the example document to explain", value = text_example)
|
181 |
+
#te.fit(record_to_explain, text_clf.predict_proba)
|
182 |
+
fit_text_explainer(record_to_explain, text_clf.predict_proba)
|
183 |
if task == "Classification":
|
184 |
st.write("Model prediction")
|
185 |
model_prediction = text_clf.predict([record_to_explain])
|