Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,802 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
import os
|
4 |
-
import re
|
5 |
-
import tempfile
|
6 |
-
import gc # garbage collector μΆκ°
|
7 |
-
from collections.abc import Iterator
|
8 |
-
from threading import Thread
|
9 |
-
import json
|
10 |
-
import requests
|
11 |
-
import cv2
|
12 |
-
import base64
|
13 |
-
import logging
|
14 |
-
import time
|
15 |
-
from urllib.parse import quote # URL μΈμ½λ© (νμ μ μ¬μ©)
|
16 |
-
|
17 |
-
import gradio as gr
|
18 |
-
import spaces
|
19 |
-
import torch
|
20 |
-
from loguru import logger
|
21 |
-
from PIL import Image
|
22 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
23 |
-
|
24 |
-
# CSV/TXT/PDF λΆμ
|
25 |
-
import pandas as pd
|
26 |
-
import PyPDF2
|
27 |
-
|
28 |
-
# =============================================================================
|
29 |
-
# (μ κ·) μ΄λ―Έμ§ API κ΄λ ¨ ν¨μλ€
|
30 |
-
# =============================================================================
|
31 |
-
from gradio_client import Client
|
32 |
-
|
33 |
-
API_URL = "http://211.233.58.201:7896"
|
34 |
-
|
35 |
-
logging.basicConfig(
|
36 |
-
level=logging.DEBUG,
|
37 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
38 |
-
)
|
39 |
-
|
40 |
-
def test_api_connection() -> str:
|
41 |
-
"""API μλ² μ°κ²° ν
μ€νΈ"""
|
42 |
-
try:
|
43 |
-
client = Client(API_URL)
|
44 |
-
return "API μ°κ²° μ±κ³΅: μ μ μλ μ€"
|
45 |
-
except Exception as e:
|
46 |
-
logging.error(f"API connection test failed: {e}")
|
47 |
-
return f"API μ°κ²° μ€ν¨: {e}"
|
48 |
-
|
49 |
-
def generate_image(prompt: str, width: float, height: float, guidance: float, inference_steps: float, seed: float):
|
50 |
-
"""
|
51 |
-
μ΄λ―Έμ§ μμ± ν¨μ.
|
52 |
-
μ¬κΈ°μλ μλ²κ° μ΅μ’
μ΄λ―Έμ§λ₯Ό Base64(λλ data:image/...) ννλ‘ μ§μ λ°ννλ€κ³ κ°μ ν©λλ€.
|
53 |
-
/tmp/... κ²½λ‘λ μΆκ° λ€μ΄λ‘λλ₯Ό μλνμ§ μμ΅λλ€.
|
54 |
-
"""
|
55 |
-
if not prompt:
|
56 |
-
return None, "Error: Prompt is required"
|
57 |
-
try:
|
58 |
-
logging.info(f"Calling image generation API with prompt: {prompt}")
|
59 |
-
|
60 |
-
client = Client(API_URL)
|
61 |
-
result = client.predict(
|
62 |
-
prompt=prompt,
|
63 |
-
width=int(width),
|
64 |
-
height=int(height),
|
65 |
-
guidance=float(guidance),
|
66 |
-
inference_steps=int(inference_steps),
|
67 |
-
seed=int(seed),
|
68 |
-
do_img2img=False,
|
69 |
-
init_image=None,
|
70 |
-
image2image_strength=0.8,
|
71 |
-
resize_img=True,
|
72 |
-
api_name="/generate_image"
|
73 |
-
)
|
74 |
-
|
75 |
-
logging.info(
|
76 |
-
f"Image generation result: {type(result)}, "
|
77 |
-
f"length: {len(result) if isinstance(result, (list, tuple)) else 'unknown'}"
|
78 |
-
)
|
79 |
-
|
80 |
-
# κ²°κ³Όκ° νν/리μ€νΈ: [μ΄λ―Έμ§_base64 or data_url, seed_info] λ‘ κ°μ
|
81 |
-
if isinstance(result, (list, tuple)) and len(result) > 0:
|
82 |
-
image_data = result[0] # 첫 λ²μ§Έ μμκ° μ΄λ―Έμ§ λ°μ΄ν° (Base64 or data:image/... λ±)
|
83 |
-
seed_info = result[1] if len(result) > 1 else "Unknown seed"
|
84 |
-
return image_data, seed_info
|
85 |
-
else:
|
86 |
-
# λ€λ₯Έ ννλ‘ λ°νλ κ²½μ°
|
87 |
-
return result, "Unknown seed"
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
logging.error(f"Image generation failed: {str(e)}")
|
91 |
-
return None, f"Error: {str(e)}"
|
92 |
-
|
93 |
-
# Base64 ν¨λ© μμ ν¨μ (νμνλ€λ©΄ μ¬μ©)
|
94 |
-
def fix_base64_padding(data):
|
95 |
-
"""Base64 λ¬Έμμ΄μ ν¨λ©μ μμ ν©λλ€."""
|
96 |
-
if isinstance(data, bytes):
|
97 |
-
data = data.decode('utf-8')
|
98 |
-
|
99 |
-
if "base64," in data:
|
100 |
-
data = data.split("base64,", 1)[1]
|
101 |
-
|
102 |
-
missing_padding = len(data) % 4
|
103 |
-
if missing_padding:
|
104 |
-
data += '=' * (4 - missing_padding)
|
105 |
-
|
106 |
-
return data
|
107 |
-
|
108 |
-
# =============================================================================
|
109 |
-
# λ©λͺ¨λ¦¬ μ 리 ν¨μ
|
110 |
-
# =============================================================================
|
111 |
-
def clear_cuda_cache():
|
112 |
-
"""CUDA μΊμλ₯Ό λͺ
μμ μΌλ‘ λΉμλλ€."""
|
113 |
-
if torch.cuda.is_available():
|
114 |
-
torch.cuda.empty_cache()
|
115 |
-
gc.collect()
|
116 |
-
|
117 |
-
# =============================================================================
|
118 |
-
# SerpHouse κ΄λ ¨ ν¨μ
|
119 |
-
# =============================================================================
|
120 |
-
SERPHOUSE_API_KEY = os.getenv("SERPHOUSE_API_KEY", "")
|
121 |
-
|
122 |
-
def extract_keywords(text: str, top_k: int = 5) -> str:
|
123 |
-
"""λ¨μ ν€μλ μΆμΆ: νκΈ, μμ΄, μ«μ, κ³΅λ°±λ§ λ¨κΉ"""
|
124 |
-
text = re.sub(r"[^a-zA-Z0-9κ°-ν£\s]", "", text)
|
125 |
-
tokens = text.split()
|
126 |
-
return " ".join(tokens[:top_k])
|
127 |
-
|
128 |
-
def do_web_search(query: str) -> str:
|
129 |
-
"""
|
130 |
-
SerpHouse LIVE API νΈμΆνμ¬ κ²μ κ²°κ³Ό λ§ν¬λ€μ΄ λ°ν
|
131 |
-
(νμνλ€λ©΄ μμ or μμ κ°λ₯)
|
132 |
-
"""
|
133 |
-
try:
|
134 |
-
url = "https://api.serphouse.com/serp/live"
|
135 |
-
params = {
|
136 |
-
"q": query,
|
137 |
-
"domain": "google.com",
|
138 |
-
"serp_type": "web",
|
139 |
-
"device": "desktop",
|
140 |
-
"lang": "en",
|
141 |
-
"num": "20"
|
142 |
-
}
|
143 |
-
headers = {"Authorization": f"Bearer {SERPHOUSE_API_KEY}"}
|
144 |
-
logger.info(f"SerpHouse API νΈμΆ μ€... κ²μμ΄: {query}")
|
145 |
-
response = requests.get(url, headers=headers, params=params, timeout=60)
|
146 |
-
response.raise_for_status()
|
147 |
-
data = response.json()
|
148 |
-
results = data.get("results", {})
|
149 |
-
organic = None
|
150 |
-
if isinstance(results, dict) and "organic" in results:
|
151 |
-
organic = results["organic"]
|
152 |
-
elif isinstance(results, dict) and "results" in results:
|
153 |
-
if isinstance(results["results"], dict) and "organic" in results["results"]:
|
154 |
-
organic = results["results"]["organic"]
|
155 |
-
elif "organic" in data:
|
156 |
-
organic = data["organic"]
|
157 |
-
if not organic:
|
158 |
-
logger.warning("μλ΅μμ organic κ²°κ³Όλ₯Ό μ°Ύμ μ μμ΅λλ€.")
|
159 |
-
return "No web search results found or unexpected API response structure."
|
160 |
-
max_results = min(20, len(organic))
|
161 |
-
limited_organic = organic[:max_results]
|
162 |
-
summary_lines = []
|
163 |
-
for idx, item in enumerate(limited_organic, start=1):
|
164 |
-
title = item.get("title", "No title")
|
165 |
-
link = item.get("link", "#")
|
166 |
-
snippet = item.get("snippet", "No description")
|
167 |
-
displayed_link = item.get("displayed_link", link)
|
168 |
-
summary_lines.append(
|
169 |
-
f"### Result {idx}: {title}\n\n"
|
170 |
-
f"{snippet}\n\n"
|
171 |
-
f"**μΆμ²**: [{displayed_link}]({link})\n\n"
|
172 |
-
f"---\n"
|
173 |
-
)
|
174 |
-
instructions = """
|
175 |
-
# μΉ κ²μ κ²°κ³Ό
|
176 |
-
μλλ κ²μ κ²°κ³Όμ
λλ€. μ§λ¬Έμ λ΅λ³ν λ μ΄ μ 보λ₯Ό νμ©νμΈμ:
|
177 |
-
1. μ¬λ¬ μΆμ² λ΄μ©μ μ’
ν©νμ¬ λ΅λ³.
|
178 |
-
2. μΆμ² μΈμ© μ "[μΆμ² μ λͺ©](λ§ν¬)" λ§ν¬λ€μ΄ νμ μ¬μ©.
|
179 |
-
3. λ΅λ³ λ§μ§λ§μ 'μ°Έκ³ μλ£:' μΉμ
μ μ¬μ©ν μ£Όμ μΆμ²λ₯Ό λμ΄.
|
180 |
-
"""
|
181 |
-
return instructions + "\n".join(summary_lines)
|
182 |
-
except Exception as e:
|
183 |
-
logger.error(f"Web search failed: {e}")
|
184 |
-
return f"Web search failed: {str(e)}"
|
185 |
-
|
186 |
-
# =============================================================================
|
187 |
-
# λͺ¨λΈ λ° νλ‘μΈμ λ‘λ©
|
188 |
-
# =============================================================================
|
189 |
-
MAX_CONTENT_CHARS = 2000
|
190 |
-
MAX_INPUT_LENGTH = 2096
|
191 |
-
|
192 |
-
model_id = os.getenv("MODEL_ID", "VIDraft/Gemma-3-R1984-4B")
|
193 |
-
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
194 |
-
model = Gemma3ForConditionalGeneration.from_pretrained(
|
195 |
-
model_id,
|
196 |
-
device_map="auto",
|
197 |
-
torch_dtype=torch.bfloat16,
|
198 |
-
attn_implementation="eager"
|
199 |
-
)
|
200 |
-
|
201 |
-
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
202 |
-
|
203 |
-
# =============================================================================
|
204 |
-
# CSV, TXT, PDF λΆμ ν¨μ
|
205 |
-
# =============================================================================
|
206 |
-
def analyze_csv_file(path: str) -> str:
|
207 |
-
try:
|
208 |
-
df = pd.read_csv(path)
|
209 |
-
if df.shape[0] > 50 or df.shape[1] > 10:
|
210 |
-
df = df.iloc[:50, :10]
|
211 |
-
df_str = df.to_string()
|
212 |
-
if len(df_str) > MAX_CONTENT_CHARS:
|
213 |
-
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
214 |
-
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
215 |
-
except Exception as e:
|
216 |
-
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
217 |
-
|
218 |
-
def analyze_txt_file(path: str) -> str:
|
219 |
-
try:
|
220 |
-
with open(path, "r", encoding="utf-8") as f:
|
221 |
-
text = f.read()
|
222 |
-
if len(text) > MAX_CONTENT_CHARS:
|
223 |
-
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
224 |
-
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
225 |
-
except Exception as e:
|
226 |
-
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
227 |
-
|
228 |
-
def pdf_to_markdown(pdf_path: str) -> str:
|
229 |
-
text_chunks = []
|
230 |
-
try:
|
231 |
-
with open(pdf_path, "rb") as f:
|
232 |
-
reader = PyPDF2.PdfReader(f)
|
233 |
-
max_pages = min(5, len(reader.pages))
|
234 |
-
for page_num in range(max_pages):
|
235 |
-
page_text = reader.pages[page_num].extract_text() or ""
|
236 |
-
page_text = page_text.strip()
|
237 |
-
if page_text:
|
238 |
-
if len(page_text) > MAX_CONTENT_CHARS // max_pages:
|
239 |
-
page_text = page_text[:MAX_CONTENT_CHARS // max_pages] + "...(truncated)"
|
240 |
-
text_chunks.append(f"## Page {page_num+1}\n\n{page_text}\n")
|
241 |
-
if len(reader.pages) > max_pages:
|
242 |
-
text_chunks.append(f"\n...(Showing {max_pages} of {len(reader.pages)} pages)...")
|
243 |
-
except Exception as e:
|
244 |
-
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
245 |
-
full_text = "\n".join(text_chunks)
|
246 |
-
if len(full_text) > MAX_CONTENT_CHARS:
|
247 |
-
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
248 |
-
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
249 |
-
|
250 |
-
# =============================================================================
|
251 |
-
# μ΄λ―Έμ§/λΉλμ€ νμΌ μ ν κ²μ¬
|
252 |
-
# =============================================================================
|
253 |
-
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
254 |
-
image_count = 0
|
255 |
-
video_count = 0
|
256 |
-
for path in paths:
|
257 |
-
if path.endswith(".mp4"):
|
258 |
-
video_count += 1
|
259 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", path, re.IGNORECASE):
|
260 |
-
image_count += 1
|
261 |
-
return image_count, video_count
|
262 |
-
|
263 |
-
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
264 |
-
image_count = 0
|
265 |
-
video_count = 0
|
266 |
-
for item in history:
|
267 |
-
if item["role"] != "user" or isinstance(item["content"], str):
|
268 |
-
continue
|
269 |
-
if isinstance(item["content"], list) and len(item["content"]) > 0:
|
270 |
-
file_path = item["content"][0]
|
271 |
-
if isinstance(file_path, str):
|
272 |
-
if file_path.endswith(".mp4"):
|
273 |
-
video_count += 1
|
274 |
-
elif re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE):
|
275 |
-
image_count += 1
|
276 |
-
return image_count, video_count
|
277 |
-
|
278 |
-
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
279 |
-
"""μ΄λ―Έμ§/λΉλμ€ μ
λ‘λ μ ν κ²μ¬."""
|
280 |
-
media_files = [f for f in message["files"]
|
281 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4")]
|
282 |
-
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
283 |
-
history_image_count, history_video_count = count_files_in_history(history)
|
284 |
-
|
285 |
-
image_count = history_image_count + new_image_count
|
286 |
-
video_count = history_video_count + new_video_count
|
287 |
-
|
288 |
-
if video_count > 1:
|
289 |
-
gr.Warning("Only one video is supported.")
|
290 |
-
return False
|
291 |
-
if video_count == 1:
|
292 |
-
if image_count > 0:
|
293 |
-
gr.Warning("Mixing images and videos is not allowed.")
|
294 |
-
return False
|
295 |
-
if "<image>" in message["text"]:
|
296 |
-
gr.Warning("Using <image> tags with video files is not supported.")
|
297 |
-
return False
|
298 |
-
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
299 |
-
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
300 |
-
return False
|
301 |
-
if "<image>" in message["text"]:
|
302 |
-
image_files = [f for f in message["files"]
|
303 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
304 |
-
image_tag_count = message["text"].count("<image>")
|
305 |
-
if image_tag_count != len(image_files):
|
306 |
-
gr.Warning("The number of <image> tags in the text does not match the number of image files.")
|
307 |
-
return False
|
308 |
-
return True
|
309 |
-
|
310 |
-
# =============================================================================
|
311 |
-
# λΉλμ€ μ²λ¦¬ ν¨μ
|
312 |
-
# =============================================================================
|
313 |
-
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
314 |
-
vidcap = cv2.VideoCapture(video_path)
|
315 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
316 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
317 |
-
frame_interval = max(int(fps), int(total_frames / 10))
|
318 |
-
frames = []
|
319 |
-
for i in range(0, total_frames, frame_interval):
|
320 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
321 |
-
success, image = vidcap.read()
|
322 |
-
if success:
|
323 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
324 |
-
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
325 |
-
pil_image = Image.fromarray(image)
|
326 |
-
timestamp = round(i / fps, 2)
|
327 |
-
frames.append((pil_image, timestamp))
|
328 |
-
if len(frames) >= 5:
|
329 |
-
break
|
330 |
-
vidcap.release()
|
331 |
-
return frames
|
332 |
-
|
333 |
-
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
334 |
-
content = []
|
335 |
-
temp_files = []
|
336 |
-
frames = downsample_video(video_path)
|
337 |
-
for pil_image, timestamp in frames:
|
338 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
339 |
-
pil_image.save(temp_file.name)
|
340 |
-
temp_files.append(temp_file.name)
|
341 |
-
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
342 |
-
content.append({"type": "image", "url": temp_file.name})
|
343 |
-
return content, temp_files
|
344 |
-
|
345 |
-
# =============================================================================
|
346 |
-
# interleaved <image> μ²λ¦¬ ν¨μ (<image> νκ·Έμ μ΄λ―Έμ§ μ
λ‘λ νΌν© μ§μ)
|
347 |
-
# =============================================================================
|
348 |
-
def process_interleaved_images(message: dict) -> list[dict]:
|
349 |
-
parts = re.split(r"(<image>)", message["text"])
|
350 |
-
content = []
|
351 |
-
image_files = [f for f in message["files"]
|
352 |
-
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
353 |
-
image_index = 0
|
354 |
-
for part in parts:
|
355 |
-
if part == "<image>" and image_index < len(image_files):
|
356 |
-
content.append({"type": "image", "url": image_files[image_index]})
|
357 |
-
image_index += 1
|
358 |
-
elif part.strip():
|
359 |
-
content.append({"type": "text", "text": part.strip()})
|
360 |
-
else:
|
361 |
-
if isinstance(part, str) and part != "<image>":
|
362 |
-
content.append({"type": "text", "text": part})
|
363 |
-
return content
|
364 |
-
|
365 |
-
# =============================================================================
|
366 |
-
# νμΌ μ²λ¦¬ -> content μμ±
|
367 |
-
# =============================================================================
|
368 |
-
def is_image_file(file_path: str) -> bool:
|
369 |
-
return bool(re.search(r"\.(png|jpg|jpeg|gif|webp)$", file_path, re.IGNORECASE))
|
370 |
-
|
371 |
-
def is_video_file(file_path: str) -> bool:
|
372 |
-
return file_path.endswith(".mp4")
|
373 |
-
|
374 |
-
def is_document_file(file_path: str) -> bool:
|
375 |
-
return file_path.lower().endswith(".pdf") or file_path.lower().endswith(".csv") or file_path.lower().endswith(".txt")
|
376 |
-
|
377 |
-
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
378 |
-
"""μ¬μ©μκ° μλ‘ μ
λ ₯ν λ©μμ§ + μ
λ‘λ νμΌλ€μ νλμ content(list)λ‘ λ³ν."""
|
379 |
-
temp_files = []
|
380 |
-
if not message["files"]:
|
381 |
-
return [{"type": "text", "text": message["text"]}], temp_files
|
382 |
-
|
383 |
-
video_files = [f for f in message["files"] if is_video_file(f)]
|
384 |
-
image_files = [f for f in message["files"] if is_image_file(f)]
|
385 |
-
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
386 |
-
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
387 |
-
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
388 |
-
|
389 |
-
content_list = [{"type": "text", "text": message["text"]}]
|
390 |
-
|
391 |
-
# λ¬Έμλ€
|
392 |
-
for csv_path in csv_files:
|
393 |
-
content_list.append({"type": "text", "text": analyze_csv_file(csv_path)})
|
394 |
-
for txt_path in txt_files:
|
395 |
-
content_list.append({"type": "text", "text": analyze_txt_file(txt_path)})
|
396 |
-
for pdf_path in pdf_files:
|
397 |
-
content_list.append({"type": "text", "text": pdf_to_markdown(pdf_path)})
|
398 |
-
|
399 |
-
# λΉλμ€ μ²λ¦¬
|
400 |
-
if video_files:
|
401 |
-
video_content, video_temp_files = process_video(video_files[0])
|
402 |
-
content_list += video_content
|
403 |
-
temp_files.extend(video_temp_files)
|
404 |
-
return content_list, temp_files
|
405 |
-
|
406 |
-
# μ΄λ―Έμ§ μ²λ¦¬
|
407 |
-
if "<image>" in message["text"] and image_files:
|
408 |
-
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
409 |
-
if content_list and content_list[0]["type"] == "text":
|
410 |
-
content_list = content_list[1:]
|
411 |
-
return interleaved_content + content_list, temp_files
|
412 |
-
else:
|
413 |
-
for img_path in image_files:
|
414 |
-
content_list.append({"type": "image", "url": img_path})
|
415 |
-
|
416 |
-
return content_list, temp_files
|
417 |
-
|
418 |
-
# =============================================================================
|
419 |
-
# history -> LLM λ©μμ§ λ³ν
|
420 |
-
# =============================================================================
|
421 |
-
def process_history(history: list[dict]) -> list[dict]:
|
422 |
-
"""
|
423 |
-
κΈ°μ‘΄ λν κΈ°λ‘μ LLMμ λ§κ² λ³ν.
|
424 |
-
- user -> {"role":"user","content":[{type,text},...]}
|
425 |
-
- assistant -> {"role":"assistant","content":[{type:"text",text},...]}
|
426 |
-
"""
|
427 |
-
messages = []
|
428 |
-
current_user_content = []
|
429 |
-
for item in history:
|
430 |
-
if item["role"] == "assistant":
|
431 |
-
# μ¬μ©μ content λμ λΆμ΄ μμΌλ©΄ νλ²μ userλ‘ μΆκ°
|
432 |
-
if current_user_content:
|
433 |
-
messages.append({"role": "user", "content": current_user_content})
|
434 |
-
current_user_content = []
|
435 |
-
# assistant λ°λ‘ μΆκ°
|
436 |
-
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
437 |
-
else:
|
438 |
-
content = item["content"]
|
439 |
-
if isinstance(content, str):
|
440 |
-
current_user_content.append({"type": "text", "text": content})
|
441 |
-
elif isinstance(content, list) and len(content) > 0:
|
442 |
-
file_path = content[0]
|
443 |
-
if is_image_file(file_path):
|
444 |
-
current_user_content.append({"type": "image", "url": file_path})
|
445 |
-
else:
|
446 |
-
current_user_content.append({"type": "text", "text": f"[File: {os.path.basename(file_path)}]"})
|
447 |
-
if current_user_content:
|
448 |
-
messages.append({"role": "user", "content": current_user_content})
|
449 |
-
return messages
|
450 |
-
|
451 |
-
# =============================================================================
|
452 |
-
# λͺ¨λΈ μμ± ν¨μ (OOM μΊμΉ)
|
453 |
-
# =============================================================================
|
454 |
-
def _model_gen_with_oom_catch(**kwargs):
|
455 |
-
try:
|
456 |
-
model.generate(**kwargs)
|
457 |
-
except torch.cuda.OutOfMemoryError:
|
458 |
-
raise RuntimeError("[OutOfMemoryError] GPU λ©λͺ¨λ¦¬κ° λΆμ‘±ν©λλ€.")
|
459 |
-
finally:
|
460 |
-
clear_cuda_cache()
|
461 |
-
|
462 |
-
# =============================================================================
|
463 |
-
# λ©μΈ μΆλ‘ ν¨μ
|
464 |
-
# =============================================================================
|
465 |
-
@spaces.GPU(duration=120)
|
466 |
-
def run(
|
467 |
-
message: dict,
|
468 |
-
history: list[dict],
|
469 |
-
system_prompt: str = "",
|
470 |
-
max_new_tokens: int = 512,
|
471 |
-
use_web_search: bool = False,
|
472 |
-
web_search_query: str = "",
|
473 |
-
age_group: str = "20λ",
|
474 |
-
mbti_personality: str = "INTP",
|
475 |
-
sexual_openness: int = 2,
|
476 |
-
image_gen: bool = False
|
477 |
-
) -> Iterator[str]:
|
478 |
-
"""
|
479 |
-
LLM μΆλ‘ ν¨μ.
|
480 |
-
- μ΄λ―Έμ§ μμ± μ, μλ²κ° Base64(λλ data:image/... νν)λ₯Ό μ§μ λ°ννλ€κ³ κ°μ .
|
481 |
-
- /tmp/... νμΌμ λν μ¬λ€μ΄λ‘λλ₯Ό μλνμ§ μμ (403 Forbidden λ¬Έμ ννΌ).
|
482 |
-
"""
|
483 |
-
if not validate_media_constraints(message, history):
|
484 |
-
yield ""
|
485 |
-
return
|
486 |
-
|
487 |
-
temp_files = []
|
488 |
-
try:
|
489 |
-
# 1) μμ€ν
ν둬ννΈ + νλ₯΄μλ μ 보
|
490 |
-
persona = (
|
491 |
-
f"{system_prompt.strip()}\n\n"
|
492 |
-
f"Gender: Female\n"
|
493 |
-
f"Age Group: {age_group}\n"
|
494 |
-
f"MBTI Persona: {mbti_personality}\n"
|
495 |
-
f"Sexual Openness (1~5): {sexual_openness}\n"
|
496 |
-
)
|
497 |
-
combined_system_msg = f"[System Prompt]\n{persona.strip()}\n\n"
|
498 |
-
|
499 |
-
# 2) μΉ κ²μ (μ΅μ
)
|
500 |
-
if use_web_search:
|
501 |
-
user_text = message["text"]
|
502 |
-
ws_query = extract_keywords(user_text)
|
503 |
-
if ws_query.strip():
|
504 |
-
logger.info(f"[Auto WebSearch Keyword] {ws_query!r}")
|
505 |
-
ws_result = do_web_search(ws_query)
|
506 |
-
combined_system_msg += f"[Search top-20 Full Items]\n{ws_result}\n\n"
|
507 |
-
combined_system_msg += (
|
508 |
-
"[μ°Έκ³ : μ κ²μκ²°κ³Ό linkλ₯Ό μΆμ²λ‘ μΈμ©νμ¬ λ΅λ³]\n"
|
509 |
-
"[μ€μ μ§μμ¬ν]\n"
|
510 |
-
"1. κ²μ κ²°κ³Όμμ μ°Ύμ μ 보μ μΆμ²λ₯Ό λ°λμ μΈμ©.\n"
|
511 |
-
"2. '[μΆμ² μ λͺ©](λ§ν¬)' νμμΌλ‘ λ§ν¬.\n"
|
512 |
-
"3. λ΅λ³ λ§μ§λ§μ 'μ°Έκ³ μλ£:' μΉμ
.\n"
|
513 |
-
)
|
514 |
-
else:
|
515 |
-
combined_system_msg += "[No valid keywords found, skipping WebSearch]\n\n"
|
516 |
-
|
517 |
-
# 3) κΈ°μ‘΄ history + μ user λ©μμ§
|
518 |
-
messages = []
|
519 |
-
if combined_system_msg.strip():
|
520 |
-
messages.append({"role": "system", "content": [{"type": "text", "text": combined_system_msg.strip()}]})
|
521 |
-
messages.extend(process_history(history))
|
522 |
-
|
523 |
-
user_content, user_temp_files = process_new_user_message(message)
|
524 |
-
temp_files.extend(user_temp_files)
|
525 |
-
|
526 |
-
for item in user_content:
|
527 |
-
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
528 |
-
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
529 |
-
|
530 |
-
messages.append({"role": "user", "content": user_content})
|
531 |
-
|
532 |
-
# 4) ν ν¬λμ΄μ§
|
533 |
-
inputs = processor.apply_chat_template(
|
534 |
-
messages,
|
535 |
-
add_generation_prompt=True,
|
536 |
-
tokenize=True,
|
537 |
-
return_dict=True,
|
538 |
-
return_tensors="pt",
|
539 |
-
).to(device=model.device, dtype=torch.bfloat16)
|
540 |
-
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
|
541 |
-
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
542 |
-
if 'attention_mask' in inputs:
|
543 |
-
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
|
544 |
-
|
545 |
-
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
546 |
-
gen_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
547 |
-
|
548 |
-
t = Thread(target=_model_gen_with_oom_catch, kwargs=gen_kwargs)
|
549 |
-
t.start()
|
550 |
-
|
551 |
-
# μ€νΈλ¦¬λ° μΆλ ₯
|
552 |
-
output_so_far = ""
|
553 |
-
for new_text in streamer:
|
554 |
-
output_so_far += new_text
|
555 |
-
yield output_so_far
|
556 |
-
|
557 |
-
# 5) μ΄λ―Έμ§ μμ± (Base64)
|
558 |
-
if image_gen:
|
559 |
-
last_user_text = message["text"].strip()
|
560 |
-
if not last_user_text:
|
561 |
-
yield output_so_far + "\n\n(μ΄λ―Έμ§ μμ± μ€ν¨: Empty user prompt)"
|
562 |
-
else:
|
563 |
-
try:
|
564 |
-
width, height = 512, 512
|
565 |
-
guidance, steps, seed = 7.5, 30, 42
|
566 |
-
|
567 |
-
logger.info(f"Generating image with prompt: {last_user_text}")
|
568 |
-
|
569 |
-
# API νΈμΆν΄μ (base64) μ΄λ―Έμ§ μμ±
|
570 |
-
image_result, seed_info = generate_image(
|
571 |
-
prompt=last_user_text,
|
572 |
-
width=width,
|
573 |
-
height=height,
|
574 |
-
guidance=guidance,
|
575 |
-
inference_steps=steps,
|
576 |
-
seed=seed
|
577 |
-
)
|
578 |
-
|
579 |
-
logger.info(f"Received image data type: {type(image_result)}")
|
580 |
-
|
581 |
-
# Base64 or data:image/... μ²λ¦¬
|
582 |
-
if image_result:
|
583 |
-
if isinstance(image_result, str):
|
584 |
-
# μ΄λ―Έ data:image/λ‘ μμνλ©΄ κ·Έλλ‘ μ¬μ©
|
585 |
-
if image_result.startswith("data:image/"):
|
586 |
-
final_md = f"\n\n**[μμ±λ μ΄λ―Έμ§]**\n\n"
|
587 |
-
yield output_so_far + final_md
|
588 |
-
else:
|
589 |
-
# μμ base64λ‘ νλ¨(λ¨, μΌλ° URLμ΄λ '/tmp/...'μ΄λ©΄ μ²λ¦¬ λΆκ°)
|
590 |
-
if len(image_result) > 100 and "/" not in image_result:
|
591 |
-
# base64
|
592 |
-
image_data = "data:image/webp;base64," + image_result
|
593 |
-
final_md = f"\n\n**[μμ±λ μ΄λ―Έμ§]**\n\n"
|
594 |
-
yield output_so_far + final_md
|
595 |
-
else:
|
596 |
-
# κ·Έ μΈ (ex. http://..., /tmp/...) -> 403 λ¬Έμ λ°μνλ―λ‘ νμ μ ν¨
|
597 |
-
yield output_so_far + "\n\n(μ΄λ―Έμ§ μμ± κ²°κ³Όκ° base64 νμμ΄ μλλλ€)"
|
598 |
-
else:
|
599 |
-
yield output_so_far + "\n\n(μ΄λ―Έμ§ μμ± κ²°κ³Όκ° λ¬Έμμ΄μ΄ μλ)"
|
600 |
-
else:
|
601 |
-
yield output_so_far + f"\n\n(μ΄λ―Έμ§ μμ± μ€ν¨: {seed_info})"
|
602 |
-
|
603 |
-
except Exception as e:
|
604 |
-
logger.error(f"Image generation error: {e}")
|
605 |
-
yield output_so_far + f"\n\n(μ΄λ―Έμ§ μμ± μ€ μ€λ₯ λ°μ: {e})"
|
606 |
-
|
607 |
-
except Exception as e:
|
608 |
-
logger.error(f"Error in run: {str(e)}")
|
609 |
-
yield f"μ£μ‘ν©λλ€. μ€λ₯κ° λ°μνμ΅λλ€: {str(e)}"
|
610 |
-
finally:
|
611 |
-
for tmp in temp_files:
|
612 |
-
try:
|
613 |
-
if os.path.exists(tmp):
|
614 |
-
os.unlink(tmp)
|
615 |
-
logger.info(f"Deleted temp file: {tmp}")
|
616 |
-
except Exception as ee:
|
617 |
-
logger.warning(f"Failed to delete temp file {tmp}: {ee}")
|
618 |
-
try:
|
619 |
-
del inputs, streamer
|
620 |
-
except Exception:
|
621 |
-
pass
|
622 |
-
clear_cuda_cache()
|
623 |
-
|
624 |
-
# =============================================================================
|
625 |
-
# μμλ€
|
626 |
-
# =============================================================================
|
627 |
-
examples = [
|
628 |
-
[
|
629 |
-
{
|
630 |
-
"text": "Compare the contents of the two PDF files.",
|
631 |
-
"files": [
|
632 |
-
"assets/additional-examples/before.pdf",
|
633 |
-
"assets/additional-examples/after.pdf",
|
634 |
-
],
|
635 |
-
}
|
636 |
-
],
|
637 |
-
[
|
638 |
-
{
|
639 |
-
"text": "Summarize and analyze the contents of the CSV file.",
|
640 |
-
"files": ["assets/additional-examples/sample-csv.csv"],
|
641 |
-
}
|
642 |
-
],
|
643 |
-
# ... λλ¨Έμ§ μμ νμνλ€λ©΄ μΆκ° ...
|
644 |
-
]
|
645 |
-
|
646 |
-
# =============================================================================
|
647 |
-
# Gradio UI (Blocks) ꡬμ±
|
648 |
-
# =============================================================================
|
649 |
-
|
650 |
-
css = """
|
651 |
-
.gradio-container {
|
652 |
-
background: rgba(255, 255, 255, 0.7);
|
653 |
-
padding: 30px 40px;
|
654 |
-
margin: 20px auto;
|
655 |
-
width: 100% !important;
|
656 |
-
max-width: none !important;
|
657 |
-
}
|
658 |
-
"""
|
659 |
-
title_html = """
|
660 |
-
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> π HeartSync : Love Dating AI π </h1>
|
661 |
-
<p align="center" style="font-size:1.1em; color:#555;">
|
662 |
-
β
FLUX Image Generation β
Reasoning & Uncensored β
Multimodal & VLM β
Deep-Research & RAG <br>
|
663 |
-
</p>
|
664 |
-
"""
|
665 |
-
|
666 |
-
with gr.Blocks(css=css, title="HeartSync") as demo:
|
667 |
-
gr.Markdown(title_html)
|
668 |
-
|
669 |
-
# λ³λ κ°€λ¬λ¦¬ μμ (νμ μ μ¬μ©)
|
670 |
-
generated_images = gr.Gallery(
|
671 |
-
label="μμ±λ μ΄λ―Έμ§",
|
672 |
-
show_label=True,
|
673 |
-
visible=False,
|
674 |
-
elem_id="generated_images",
|
675 |
-
columns=2,
|
676 |
-
height="auto",
|
677 |
-
object_fit="contain"
|
678 |
-
)
|
679 |
-
|
680 |
-
with gr.Row():
|
681 |
-
web_search_checkbox = gr.Checkbox(label="Deep Research", value=False)
|
682 |
-
image_gen_checkbox = gr.Checkbox(label="Image Gen", value=False)
|
683 |
-
|
684 |
-
base_system_prompt_box = gr.Textbox(
|
685 |
-
lines=3,
|
686 |
-
value="You are a deep thinking AI...\nνλ₯΄μλ: λΉμ μ λ¬μ½€νκ³ ...",
|
687 |
-
label="κΈ°λ³Έ μμ€ν
ν둬ννΈ",
|
688 |
-
visible=False
|
689 |
-
)
|
690 |
-
with gr.Row():
|
691 |
-
age_group_dropdown = gr.Dropdown(
|
692 |
-
label="μ°λ Ήλ μ ν (κΈ°λ³Έ 20λ)",
|
693 |
-
choices=["10λ", "20λ", "30~40λ", "50~60λ", "70λ μ΄μ"],
|
694 |
-
value="20λ",
|
695 |
-
interactive=True
|
696 |
-
)
|
697 |
-
mbti_choices = [
|
698 |
-
"INTJ (μ©μμ£Όλν μ λ΅κ°)",
|
699 |
-
"INTP (λ
Όλ¦¬μ μΈ μ¬μκ°)",
|
700 |
-
"ENTJ (λλ΄ν ν΅μμ)",
|
701 |
-
"ENTP (λ¨κ±°μ΄ λ
Όμκ°)",
|
702 |
-
"INFJ (μ μμ μΉνΈμ)",
|
703 |
-
"INFP (μ΄μ μ μΈ μ€μ¬μ)",
|
704 |
-
"ENFJ (μ μλ‘μ΄ μ¬νμ΄λκ°)",
|
705 |
-
"ENFP (μ¬κΈ°λ°λν νλκ°)",
|
706 |
-
"ISTJ (μ²λ ΄κ²°λ°±ν λ
Όλ¦¬μ£Όμμ)",
|
707 |
-
"ISFJ (μ©κ°ν μνΈμ)",
|
708 |
-
"ESTJ (μ격ν κ΄λ¦¬μ)",
|
709 |
-
"ESFJ (μ¬κ΅μ μΈ μΈκ΅κ΄)",
|
710 |
-
"ISTP (λ§λ₯ μ¬μ£ΌκΎΌ)",
|
711 |
-
"ISFP (νΈκΈ°μ¬ λ§μ μμ κ°)",
|
712 |
-
"ESTP (λͺ¨νμ μ¦κΈ°λ μ¬μ
κ°)",
|
713 |
-
"ESFP (μμ λ‘μ΄ μνΌμ μ°μμΈ)"
|
714 |
-
]
|
715 |
-
mbti_dropdown = gr.Dropdown(
|
716 |
-
label="AI νλ₯΄μλ MBTI (κΈ°λ³Έ INTP)",
|
717 |
-
choices=mbti_choices,
|
718 |
-
value="INTP (λ
Όλ¦¬μ μΈ μ¬μκ°)",
|
719 |
-
interactive=True
|
720 |
-
)
|
721 |
-
sexual_openness_slider = gr.Slider(
|
722 |
-
minimum=1, maximum=5, step=1, value=2,
|
723 |
-
label="μΉμμΌ κ΄μ¬λ/κ°λ°©μ± (1~5, κΈ°λ³Έ=2)",
|
724 |
-
interactive=True
|
725 |
-
)
|
726 |
-
max_tokens_slider = gr.Slider(
|
727 |
-
label="Max New Tokens",
|
728 |
-
minimum=100, maximum=8000, step=50, value=1000,
|
729 |
-
visible=False
|
730 |
-
)
|
731 |
-
web_search_text = gr.Textbox(
|
732 |
-
lines=1,
|
733 |
-
label="(Unused) Web Search Query",
|
734 |
-
placeholder="No direct input needed",
|
735 |
-
visible=False
|
736 |
-
)
|
737 |
-
|
738 |
-
def modified_run(
|
739 |
-
message, history, system_prompt, max_new_tokens,
|
740 |
-
use_web_search, web_search_query,
|
741 |
-
age_group, mbti_personality, sexual_openness, image_gen
|
742 |
-
):
|
743 |
-
"""
|
744 |
-
run() ν¨μλ₯Ό νΈμΆνμ¬ ν
μ€νΈ μ€νΈλ¦Όμ λ°κ³ ,
|
745 |
-
νμ μ μΆκ° μ²λ¦¬ ν κ²°κ³Ό λ°ν (κ°€λ¬λ¦¬ μ
λ°μ΄νΈ λ±).
|
746 |
-
"""
|
747 |
-
output_so_far = ""
|
748 |
-
gallery_update = gr.Gallery(visible=False, value=[])
|
749 |
-
yield output_so_far, gallery_update
|
750 |
-
|
751 |
-
text_generator = run(
|
752 |
-
message, history,
|
753 |
-
system_prompt, max_new_tokens,
|
754 |
-
use_web_search, web_search_query,
|
755 |
-
age_group, mbti_personality,
|
756 |
-
sexual_openness, image_gen
|
757 |
-
)
|
758 |
-
|
759 |
-
for text_chunk in text_generator:
|
760 |
-
output_so_far = text_chunk
|
761 |
-
yield output_so_far, gallery_update
|
762 |
-
|
763 |
-
# λ§μ½ run() λ΄λΆμμ Base64 μ΄λ―Έμ§λ₯Ό μ΄λ―Έ λνμ°½μ μ½μ
νλ€λ©΄,
|
764 |
-
# μ¬κΈ°μ κ°€λ¬λ¦¬μ λ°λ‘ νμν νμλ μμ μλ μμ΅λλ€.
|
765 |
-
# run() λ΄λΆμμμ image_resultλ₯Ό κ°μ Έμ€λ €λ©΄, run() ν¨μκ° ν΄λΉ μ 보λ₯Ό λ°ννλλ‘ μΆκ° μμ μ΄ νμν©λλ€.
|
766 |
-
|
767 |
-
chat = gr.ChatInterface(
|
768 |
-
fn=modified_run,
|
769 |
-
type="messages",
|
770 |
-
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
771 |
-
textbox=gr.MultimodalTextbox(
|
772 |
-
file_types=[".webp", ".png", ".jpg", ".jpeg", ".gif", ".mp4", ".csv", ".txt", ".pdf"],
|
773 |
-
file_count="multiple",
|
774 |
-
autofocus=True
|
775 |
-
),
|
776 |
-
multimodal=True,
|
777 |
-
additional_inputs=[
|
778 |
-
base_system_prompt_box,
|
779 |
-
max_tokens_slider,
|
780 |
-
web_search_checkbox,
|
781 |
-
web_search_text,
|
782 |
-
age_group_dropdown,
|
783 |
-
mbti_dropdown,
|
784 |
-
sexual_openness_slider,
|
785 |
-
image_gen_checkbox,
|
786 |
-
],
|
787 |
-
additional_outputs=[generated_images],
|
788 |
-
stop_btn=False,
|
789 |
-
title='<a href="https://discord.gg/openfreeai" target="_blank">https://discord.gg/openfreeai</a>',
|
790 |
-
examples=examples,
|
791 |
-
run_examples_on_click=False,
|
792 |
-
cache_examples=False,
|
793 |
-
css_paths=None,
|
794 |
-
delete_cache=(1800, 1800),
|
795 |
-
)
|
796 |
-
|
797 |
-
with gr.Row(elem_id="examples_row"):
|
798 |
-
with gr.Column(scale=12, elem_id="examples_container"):
|
799 |
-
gr.Markdown("### Example Inputs (click to load)")
|
800 |
-
|
801 |
-
if __name__ == "__main__":
|
802 |
-
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|