Spaces:
Running
on
Zero
Running
on
Zero
Create app-backup.py
Browse files- app-backup.py +499 -0
app-backup.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
from collections.abc import Iterator
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
import cv2
|
10 |
+
import gradio as gr
|
11 |
+
import spaces
|
12 |
+
import torch
|
13 |
+
from loguru import logger
|
14 |
+
from PIL import Image
|
15 |
+
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
+
|
17 |
+
# CSV/TXT ๋ถ์
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
# PDF ํ
์คํธ ์ถ์ถ
|
21 |
+
import PyPDF2
|
22 |
+
|
23 |
+
MAX_CONTENT_CHARS = 8000 # ๋๋ฌด ํฐ ํ์ผ์ ๋ง๊ธฐ ์ํด ์ต๋ ํ์ 8000์
|
24 |
+
|
25 |
+
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
26 |
+
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
27 |
+
model = Gemma3ForConditionalGeneration.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
device_map="auto",
|
30 |
+
torch_dtype=torch.bfloat16,
|
31 |
+
attn_implementation="eager"
|
32 |
+
)
|
33 |
+
|
34 |
+
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
35 |
+
|
36 |
+
|
37 |
+
##################################################
|
38 |
+
# CSV, TXT, PDF ๋ถ์ ํจ์
|
39 |
+
##################################################
|
40 |
+
def analyze_csv_file(path: str) -> str:
|
41 |
+
"""
|
42 |
+
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
|
43 |
+
"""
|
44 |
+
try:
|
45 |
+
df = pd.read_csv(path)
|
46 |
+
df_str = df.to_string()
|
47 |
+
if len(df_str) > MAX_CONTENT_CHARS:
|
48 |
+
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
49 |
+
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
50 |
+
except Exception as e:
|
51 |
+
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
52 |
+
|
53 |
+
|
54 |
+
def analyze_txt_file(path: str) -> str:
|
55 |
+
"""
|
56 |
+
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์.
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
with open(path, "r", encoding="utf-8") as f:
|
60 |
+
text = f.read()
|
61 |
+
if len(text) > MAX_CONTENT_CHARS:
|
62 |
+
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
63 |
+
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
64 |
+
except Exception as e:
|
65 |
+
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
66 |
+
|
67 |
+
|
68 |
+
def pdf_to_markdown(pdf_path: str) -> str:
|
69 |
+
"""
|
70 |
+
PDF โ Markdown. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ.
|
71 |
+
"""
|
72 |
+
text_chunks = []
|
73 |
+
try:
|
74 |
+
with open(pdf_path, "rb") as f:
|
75 |
+
reader = PyPDF2.PdfReader(f)
|
76 |
+
for page_num, page in enumerate(reader.pages, start=1):
|
77 |
+
page_text = page.extract_text() or ""
|
78 |
+
page_text = page_text.strip()
|
79 |
+
if page_text:
|
80 |
+
text_chunks.append(f"## Page {page_num}\n\n{page_text}\n")
|
81 |
+
except Exception as e:
|
82 |
+
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
83 |
+
|
84 |
+
full_text = "\n".join(text_chunks)
|
85 |
+
if len(full_text) > MAX_CONTENT_CHARS:
|
86 |
+
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
87 |
+
|
88 |
+
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
89 |
+
|
90 |
+
|
91 |
+
##################################################
|
92 |
+
# ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
|
93 |
+
##################################################
|
94 |
+
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
95 |
+
image_count = 0
|
96 |
+
video_count = 0
|
97 |
+
for path in paths:
|
98 |
+
if path.endswith(".mp4"):
|
99 |
+
video_count += 1
|
100 |
+
else:
|
101 |
+
image_count += 1
|
102 |
+
return image_count, video_count
|
103 |
+
|
104 |
+
|
105 |
+
def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
106 |
+
image_count = 0
|
107 |
+
video_count = 0
|
108 |
+
for item in history:
|
109 |
+
if item["role"] != "user" or isinstance(item["content"], str):
|
110 |
+
continue
|
111 |
+
if item["content"][0].endswith(".mp4"):
|
112 |
+
video_count += 1
|
113 |
+
else:
|
114 |
+
image_count += 1
|
115 |
+
return image_count, video_count
|
116 |
+
|
117 |
+
|
118 |
+
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
119 |
+
"""
|
120 |
+
- ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ
|
121 |
+
- ๋น๋์ค์ ์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ
|
122 |
+
- ์ด๋ฏธ์ง ๊ฐ์ MAX_NUM_IMAGES ์ด๊ณผ ๋ถ๊ฐ
|
123 |
+
- <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ค์ ์ด๋ฏธ์ง ์ ์ผ์น
|
124 |
+
- CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง ์์
|
125 |
+
"""
|
126 |
+
media_files = []
|
127 |
+
for f in message["files"]:
|
128 |
+
# ์ด๋ฏธ์ง: png/jpg/jpeg/gif/webp
|
129 |
+
# ๋น๋์ค: mp4
|
130 |
+
# cf) PDF, CSV, TXT ๋ฑ์ ์ ์ธ
|
131 |
+
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
132 |
+
media_files.append(f)
|
133 |
+
|
134 |
+
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
135 |
+
history_image_count, history_video_count = count_files_in_history(history)
|
136 |
+
image_count = history_image_count + new_image_count
|
137 |
+
video_count = history_video_count + new_video_count
|
138 |
+
|
139 |
+
if video_count > 1:
|
140 |
+
gr.Warning("Only one video is supported.")
|
141 |
+
return False
|
142 |
+
if video_count == 1:
|
143 |
+
if image_count > 0:
|
144 |
+
gr.Warning("Mixing images and videos is not allowed.")
|
145 |
+
return False
|
146 |
+
if "<image>" in message["text"]:
|
147 |
+
gr.Warning("Using <image> tags with video files is not supported.")
|
148 |
+
return False
|
149 |
+
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
150 |
+
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
151 |
+
return False
|
152 |
+
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
|
153 |
+
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
154 |
+
return False
|
155 |
+
|
156 |
+
return True
|
157 |
+
|
158 |
+
|
159 |
+
##################################################
|
160 |
+
# ๋น๋์ค ์ฒ๋ฆฌ
|
161 |
+
##################################################
|
162 |
+
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
163 |
+
vidcap = cv2.VideoCapture(video_path)
|
164 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
165 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
166 |
+
|
167 |
+
frame_interval = int(fps / 3)
|
168 |
+
frames = []
|
169 |
+
|
170 |
+
for i in range(0, total_frames, frame_interval):
|
171 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
172 |
+
success, image = vidcap.read()
|
173 |
+
if success:
|
174 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
175 |
+
pil_image = Image.fromarray(image)
|
176 |
+
timestamp = round(i / fps, 2)
|
177 |
+
frames.append((pil_image, timestamp))
|
178 |
+
|
179 |
+
vidcap.release()
|
180 |
+
return frames
|
181 |
+
|
182 |
+
|
183 |
+
def process_video(video_path: str) -> list[dict]:
|
184 |
+
content = []
|
185 |
+
frames = downsample_video(video_path)
|
186 |
+
for frame in frames:
|
187 |
+
pil_image, timestamp = frame
|
188 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
189 |
+
pil_image.save(temp_file.name)
|
190 |
+
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
191 |
+
content.append({"type": "image", "url": temp_file.name})
|
192 |
+
logger.debug(f"{content=}")
|
193 |
+
return content
|
194 |
+
|
195 |
+
|
196 |
+
##################################################
|
197 |
+
# interleaved <image> ์ฒ๋ฆฌ
|
198 |
+
##################################################
|
199 |
+
def process_interleaved_images(message: dict) -> list[dict]:
|
200 |
+
parts = re.split(r"(<image>)", message["text"])
|
201 |
+
content = []
|
202 |
+
image_index = 0
|
203 |
+
for part in parts:
|
204 |
+
if part == "<image>":
|
205 |
+
content.append({"type": "image", "url": message["files"][image_index]})
|
206 |
+
image_index += 1
|
207 |
+
elif part.strip():
|
208 |
+
content.append({"type": "text", "text": part.strip()})
|
209 |
+
else:
|
210 |
+
# ๊ณต๋ฐฑ์ด๊ฑฐ๋ \n ๊ฐ์ ๊ฒฝ์ฐ
|
211 |
+
if isinstance(part, str) and part != "<image>":
|
212 |
+
content.append({"type": "text", "text": part})
|
213 |
+
return content
|
214 |
+
|
215 |
+
|
216 |
+
##################################################
|
217 |
+
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
|
218 |
+
##################################################
|
219 |
+
def process_new_user_message(message: dict) -> list[dict]:
|
220 |
+
if not message["files"]:
|
221 |
+
return [{"type": "text", "text": message["text"]}]
|
222 |
+
|
223 |
+
# 1) ํ์ผ ๋ถ๋ฅ
|
224 |
+
video_files = [f for f in message["files"] if f.endswith(".mp4")]
|
225 |
+
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
226 |
+
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
227 |
+
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
228 |
+
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
229 |
+
|
230 |
+
# 2) ์ฌ์ฉ์ ์๋ณธ text ์ถ๊ฐ
|
231 |
+
content_list = [{"type": "text", "text": message["text"]}]
|
232 |
+
|
233 |
+
# 3) CSV
|
234 |
+
for csv_path in csv_files:
|
235 |
+
csv_analysis = analyze_csv_file(csv_path)
|
236 |
+
content_list.append({"type": "text", "text": csv_analysis})
|
237 |
+
|
238 |
+
# 4) TXT
|
239 |
+
for txt_path in txt_files:
|
240 |
+
txt_analysis = analyze_txt_file(txt_path)
|
241 |
+
content_list.append({"type": "text", "text": txt_analysis})
|
242 |
+
|
243 |
+
# 5) PDF
|
244 |
+
for pdf_path in pdf_files:
|
245 |
+
pdf_markdown = pdf_to_markdown(pdf_path)
|
246 |
+
content_list.append({"type": "text", "text": pdf_markdown})
|
247 |
+
|
248 |
+
# 6) ๋น๋์ค (ํ ๊ฐ๋ง ํ์ฉ)
|
249 |
+
if video_files:
|
250 |
+
content_list += process_video(video_files[0])
|
251 |
+
return content_list
|
252 |
+
|
253 |
+
# 7) ์ด๋ฏธ์ง ์ฒ๋ฆฌ
|
254 |
+
if "<image>" in message["text"]:
|
255 |
+
# interleaved
|
256 |
+
return process_interleaved_images(message)
|
257 |
+
else:
|
258 |
+
# ์ผ๋ฐ ์ฌ๋ฌ ์ฅ
|
259 |
+
for img_path in image_files:
|
260 |
+
content_list.append({"type": "image", "url": img_path})
|
261 |
+
|
262 |
+
return content_list
|
263 |
+
|
264 |
+
|
265 |
+
##################################################
|
266 |
+
# history -> LLM ๋ฉ์์ง ๋ณํ
|
267 |
+
##################################################
|
268 |
+
def process_history(history: list[dict]) -> list[dict]:
|
269 |
+
messages = []
|
270 |
+
current_user_content: list[dict] = []
|
271 |
+
for item in history:
|
272 |
+
if item["role"] == "assistant":
|
273 |
+
# user_content๊ฐ ์์ฌ์๋ค๋ฉด user ๋ฉ์์ง๋ก ์ ์ฅ
|
274 |
+
if current_user_content:
|
275 |
+
messages.append({"role": "user", "content": current_user_content})
|
276 |
+
current_user_content = []
|
277 |
+
# ๊ทธ ๋ค item์ assistant
|
278 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
279 |
+
else:
|
280 |
+
# user
|
281 |
+
content = item["content"]
|
282 |
+
if isinstance(content, str):
|
283 |
+
current_user_content.append({"type": "text", "text": content})
|
284 |
+
else:
|
285 |
+
# ์ด๋ฏธ์ง๋ ๊ธฐํ
|
286 |
+
current_user_content.append({"type": "image", "url": content[0]})
|
287 |
+
return messages
|
288 |
+
|
289 |
+
|
290 |
+
##################################################
|
291 |
+
# ๋ฉ์ธ ์ถ๋ก ํจ์
|
292 |
+
##################################################
|
293 |
+
@spaces.GPU(duration=120)
|
294 |
+
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
295 |
+
if not validate_media_constraints(message, history):
|
296 |
+
yield ""
|
297 |
+
return
|
298 |
+
|
299 |
+
messages = []
|
300 |
+
if system_prompt:
|
301 |
+
messages.append({"role": "system", "content": [{"type": "text", "text": system_prompt}]})
|
302 |
+
messages.extend(process_history(history))
|
303 |
+
messages.append({"role": "user", "content": process_new_user_message(message)})
|
304 |
+
|
305 |
+
inputs = processor.apply_chat_template(
|
306 |
+
messages,
|
307 |
+
add_generation_prompt=True,
|
308 |
+
tokenize=True,
|
309 |
+
return_dict=True,
|
310 |
+
return_tensors="pt",
|
311 |
+
).to(device=model.device, dtype=torch.bfloat16)
|
312 |
+
|
313 |
+
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
314 |
+
gen_kwargs = dict(
|
315 |
+
inputs,
|
316 |
+
streamer=streamer,
|
317 |
+
max_new_tokens=max_new_tokens,
|
318 |
+
)
|
319 |
+
t = Thread(target=model.generate, kwargs=gen_kwargs)
|
320 |
+
t.start()
|
321 |
+
|
322 |
+
output = ""
|
323 |
+
for new_text in streamer:
|
324 |
+
output += new_text
|
325 |
+
yield output
|
326 |
+
|
327 |
+
|
328 |
+
##################################################
|
329 |
+
# ์์๋ค (๊ธฐ์กด)
|
330 |
+
##################################################
|
331 |
+
##################################################
|
332 |
+
# ์์๋ค (ํ๊ธํ ๋ฒ์ )
|
333 |
+
##################################################
|
334 |
+
examples = [
|
335 |
+
|
336 |
+
[
|
337 |
+
{
|
338 |
+
"text": "PDF ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ.",
|
339 |
+
"files": ["assets/additional-examples/pdf.pdf"],
|
340 |
+
}
|
341 |
+
],
|
342 |
+
[
|
343 |
+
{
|
344 |
+
"text": "CSV ํ์ผ ๋ด์ฉ์ ์์ฝ, ๋ถ์ํ๋ผ",
|
345 |
+
"files": ["assets/additional-examples/sample-csv.csv"],
|
346 |
+
}
|
347 |
+
],
|
348 |
+
[
|
349 |
+
{
|
350 |
+
"text": "๋์ผํ ๋ง๋ ๊ทธ๋ํ๋ฅผ ๊ทธ๋ฆฌ๋ matplotlib ์ฝ๋๋ฅผ ์์ฑํด์ฃผ์ธ์.",
|
351 |
+
"files": ["assets/additional-examples/barchart.png"],
|
352 |
+
}
|
353 |
+
],
|
354 |
+
[
|
355 |
+
{
|
356 |
+
"text": "์ด ์์์์ ์ด์ํ ์ ์ด ๋ฌด์์ธ๊ฐ์?",
|
357 |
+
"files": ["assets/additional-examples/tmp.mp4"],
|
358 |
+
}
|
359 |
+
],
|
360 |
+
[
|
361 |
+
{
|
362 |
+
"text": "์ด๋ฏธ ์ด ์์์ ๋ฅผ <image> ๊ฐ์ง๊ณ ์๊ณ , ์ด ์ ํ <image>์ ์๋ก ์ฌ๋ ค ํฉ๋๋ค. ํจ๊ป ์ญ์ทจํ ๋ ์ฃผ์ํด์ผ ํ ์ ์ด ์์๊น์?",
|
363 |
+
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
364 |
+
}
|
365 |
+
],
|
366 |
+
[
|
367 |
+
{
|
368 |
+
"text": "์ด๋ฏธ์ง์ ์๊ฐ์ ์์์์ ์๊ฐ์ ๋ฐ์ ์๋ฅผ ์์ฑํด์ฃผ์ธ์.",
|
369 |
+
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
|
370 |
+
}
|
371 |
+
],
|
372 |
+
[
|
373 |
+
{
|
374 |
+
"text": "์ด๋ฏธ์ง์ ์๊ฐ์ ์์๋ฅผ ํ ๋๋ก ์งง์ ์
๊ณก์ ์๊ณกํด์ฃผ์ธ์.",
|
375 |
+
"files": [
|
376 |
+
"assets/sample-images/07-1.png",
|
377 |
+
"assets/sample-images/07-2.png",
|
378 |
+
"assets/sample-images/07-3.png",
|
379 |
+
"assets/sample-images/07-4.png",
|
380 |
+
],
|
381 |
+
}
|
382 |
+
],
|
383 |
+
[
|
384 |
+
{
|
385 |
+
"text": "์ด ์ง์์ ๋ฌด์จ ์ผ์ด ์์์์ง ์งง์ ์ด์ผ๊ธฐ๋ฅผ ์ง์ด๋ณด์ธ์.",
|
386 |
+
"files": ["assets/sample-images/08.png"],
|
387 |
+
}
|
388 |
+
],
|
389 |
+
[
|
390 |
+
{
|
391 |
+
"text": "์ด๋ฏธ์ง๋ค์ ์์๋ฅผ ๋ฐํ์ผ๋ก ์งง์ ์ด์ผ๊ธฐ๋ฅผ ๋ง๋ค์ด ์ฃผ์ธ์.",
|
392 |
+
"files": [
|
393 |
+
"assets/sample-images/09-1.png",
|
394 |
+
"assets/sample-images/09-2.png",
|
395 |
+
"assets/sample-images/09-3.png",
|
396 |
+
"assets/sample-images/09-4.png",
|
397 |
+
"assets/sample-images/09-5.png",
|
398 |
+
],
|
399 |
+
}
|
400 |
+
],
|
401 |
+
[
|
402 |
+
{
|
403 |
+
"text": "์ด ์ธ๊ณ์์ ์ด๊ณ ์์ ์๋ฌผ๋ค์ ์์ํด์ ๋ฌ์ฌํด์ฃผ์ธ์.",
|
404 |
+
"files": ["assets/sample-images/10.png"],
|
405 |
+
}
|
406 |
+
],
|
407 |
+
[
|
408 |
+
{
|
409 |
+
"text": "์ด๋ฏธ์ง์ ์ ํ ํ
์คํธ๋ฅผ ์ฝ์ด์ฃผ์ธ์.",
|
410 |
+
"files": ["assets/additional-examples/1.png"],
|
411 |
+
}
|
412 |
+
],
|
413 |
+
[
|
414 |
+
{
|
415 |
+
"text": "์ด ํฐ์ผ์ ์ธ์ ๋ฐ๊ธ๋ ๊ฒ์ด๊ณ , ๊ฐ๊ฒฉ์ ์ผ๋ง์ธ๊ฐ์?",
|
416 |
+
"files": ["assets/additional-examples/2.png"],
|
417 |
+
}
|
418 |
+
],
|
419 |
+
[
|
420 |
+
{
|
421 |
+
"text": "์ด๋ฏธ์ง์ ์๋ ํ
์คํธ๋ฅผ ๊ทธ๋๋ก ์ฝ์ด์ ๋งํฌ๋ค์ด ํํ๋ก ์ ์ด์ฃผ์ธ์.",
|
422 |
+
"files": ["assets/additional-examples/3.png"],
|
423 |
+
}
|
424 |
+
],
|
425 |
+
[
|
426 |
+
{
|
427 |
+
"text": "์ด ์ ๋ถ์ ํ์ด์ฃผ์ธ์.",
|
428 |
+
"files": ["assets/additional-examples/4.png"],
|
429 |
+
}
|
430 |
+
],
|
431 |
+
[
|
432 |
+
{
|
433 |
+
"text": "์ด ์ด๋ฏธ์ง๋ฅผ ๊ฐ๋จํ ์บก์
์ผ๋ก ์ค๋ช
ํด์ฃผ์ธ์.",
|
434 |
+
"files": ["assets/sample-images/01.png"],
|
435 |
+
}
|
436 |
+
],
|
437 |
+
[
|
438 |
+
{
|
439 |
+
"text": "์ด ํ์งํ์๋ ๋ฌด์จ ๋ฌธ๊ตฌ๊ฐ ์ ํ ์๋์?",
|
440 |
+
"files": ["assets/sample-images/02.png"],
|
441 |
+
}
|
442 |
+
],
|
443 |
+
[
|
444 |
+
{
|
445 |
+
"text": "๋ ์ด๋ฏธ์ง๋ฅผ ๋น๊ตํด์ ๊ณตํต์ ๊ณผ ์ฐจ์ด์ ์ ๋งํด์ฃผ์ธ์.",
|
446 |
+
"files": ["assets/sample-images/03.png"],
|
447 |
+
}
|
448 |
+
],
|
449 |
+
[
|
450 |
+
{
|
451 |
+
"text": "์ด๋ฏธ์ง์ ๋ณด์ด๋ ๋ชจ๋ ์ฌ๋ฌผ๊ณผ ๊ทธ ์์์ ๋์ดํด์ฃผ์ธ์.",
|
452 |
+
"files": ["assets/sample-images/04.png"],
|
453 |
+
}
|
454 |
+
],
|
455 |
+
[
|
456 |
+
{
|
457 |
+
"text": "์ฅ๋ฉด์ ๋ถ์๊ธฐ๋ฅผ ๋ฌ์ฌํด์ฃผ์ธ์.",
|
458 |
+
"files": ["assets/sample-images/05.png"],
|
459 |
+
}
|
460 |
+
],
|
461 |
+
]
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
demo = gr.ChatInterface(
|
466 |
+
fn=run,
|
467 |
+
type="messages",
|
468 |
+
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
469 |
+
# .webp, .png, .jpg, .jpeg, .gif, .mp4, .csv, .txt, .pdf ๋ชจ๋ ํ์ฉ
|
470 |
+
textbox=gr.MultimodalTextbox(
|
471 |
+
file_types=[
|
472 |
+
".webp", ".png", ".jpg", ".jpeg", ".gif",
|
473 |
+
".mp4", ".csv", ".txt", ".pdf"
|
474 |
+
],
|
475 |
+
file_count="multiple",
|
476 |
+
autofocus=True
|
477 |
+
),
|
478 |
+
multimodal=True,
|
479 |
+
additional_inputs=[
|
480 |
+
gr.Textbox(
|
481 |
+
label="System Prompt",
|
482 |
+
value=(
|
483 |
+
"You are a deeply thoughtful AI. Consider problems thoroughly and derive "
|
484 |
+
"correct solutions through systematic reasoning. Please answer in korean."
|
485 |
+
)
|
486 |
+
),
|
487 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
|
488 |
+
],
|
489 |
+
stop_btn=False,
|
490 |
+
title="Vidraft-Gemma-3-27B",
|
491 |
+
examples=examples,
|
492 |
+
run_examples_on_click=False,
|
493 |
+
cache_examples=False,
|
494 |
+
css_paths="style.css",
|
495 |
+
delete_cache=(1800, 1800),
|
496 |
+
)
|
497 |
+
|
498 |
+
if __name__ == "__main__":
|
499 |
+
demo.launch()
|